Doctors, Data, Diagnoses, and Discussions: Achieving Successful and Sustainable Personalized/Precision Medicine

Posted on January 10, 2018 I Written By

The following is a guest blog post by Drew Furst, M.D., Vice President Clinical Consultants at Elsevier Clinical Solutions.

Personalized/precision medicine is a growing field and that trend shows no sign of slowing down.

In fact, a 2016 Grand View Research report estimated the global personalized medicine market was worth $1,007.88 billion in 2014, with projected growth to reach $2,452.50 billion by 2022.

As these areas of medicine become more commonplace, understanding the interactions between biological factors with a range of personal, environmental and social impacts on health is a vital step towards achieving sustainable success.

A better understanding begins with answering important questions such as whether the focus should be precision population medicine (based on disease) or precision patient-specific medicine (based on the individual).

Specificity in terminology is needed. The traditional term of “personalized medicine” has evolved into the term “precision medicine,” but this new usage requires a more detailed look into the precise science of genetic, environmental and lifestyle factors that influence any approach to treatment.

Comprehending the interactions between biological factors with a range of personal, environmental, and social impacts on health can provide insights into success and we’ve learned that some areas of precision medicine are more effective than others.

Through pharmacogenomics – the study of understanding how a patient’s genetic make-up affects the response to a particular drug – we have identified key enzymes in cancer formation and cancer treatment, which aids in the customization of drugs.

Research shows us that drug-metabolizing enzyme activity is one of many factors that impact a patient’s response to medication. We also know that human cytochrome P450 (CYP) plays an important role in the metabolism of drugs and environmental chemicals.

Therapies that incorporate drug-specific pharmacogenomics are a boon to oncology treatments and a vast improvement over the “shotgun therapy” approach of the past. Today, treatments can be targeted to enzymes and receptors that vary from person to person.

In traditional chemotherapy, a drug developed to kill rapidly growing cancer cells will indiscriminately target other rapidly growing cells such as hair cells, hence the often-observed hair loss. However, a targeted drug and delivery method aimed at only the receptive cells can be a much more effective approach and treatment, while minimizing collateral damage.

Recently, the journal Nature published a study showing the promise this method holds.  In the pilot study, scientists led by Dr. Catherine Wu of Dana-Farber Cancer Institute in Boston gave six melanoma patients an experimental, custom-made vaccine and, two years later, all were tumor-free following treatment.

Looking Beyond Genetics

Precision medicine needs to include more than just genetics.

Factors such as environment and socio-economic status also must be included when approaching disease states and we must undertake a comprehensive overview of a patient’s situation, including, but not limited to, family history.

Cultural dietary traditions can play into disease susceptibility. As an example, the frequent consumption of smoked fish in some Asian cultures increases their risk of gastric (stomach) cancers. Lower socioeconomic status can force acceptance of substandard and overcrowded housing with increased risk of illness ranging from lead toxicity, asbestosis, and Hantavirus to name a just a few.

A patient with a genetic propensity for lung cancer who also smokes cigarettes and has high radon levels in their home is increasing the odds of developing disease due to these combined genetic, behavioral, and environmental factors.

Patient-derived Data and the Diagnosis

In addition to the information now available through state-of-the-art medical testing, patient-derived information from wearables, biometrics, and direct-to-consumer health testing kits, presents patients and physicians alike with new opportunities and challenges.

Armed with newly discovered health data, patients may present it to their doctors with a request that it be included in their health record. Many patients expect an interpretation of that data when they visit their doctor and an explanation of what it means for their present (and future) healthcare.

Doctors can be overwhelmed when unfiltered information is thrown at them. Doctors are not prepared and research has yet to offer definitive support for interpretation of patient-derived data.

Studying hereditary traits can offer some insights from generation to generation. By delving into genomics of individual patients, we get a clearer picture into a person’s risk factor for a certain disease, but often this information provides no immediate solutions. Discovering a genetic indicator for Alzheimer’s, may reflect a higher propensity for the disease, but symptoms may be decades away, if they appear at all.

Pitfalls and Possibilities

There are many concerns about genomic data collection, one of which is whether policies can keep pace with patient privacy and the related ethical questions that inevitably ensue. These questions are consistently surfacing and there is no clear direction on the best course of action.

Clearer policies are needed to delineate who has access to a patient’s genetic records and whether third parties, such as health or life insurance companies, can deny coverage or care based on genomics.

In addition, one cannot ignore the psychological burden associated with knowing your “potential” for a disease, based solely on your genetic testing, when it may never come to fruition. Not to mention, its effect on planning for one’s future decisions relative to career, residence, and relationship commitments.

Even some physicians are reticent to undergo genetic testing for fear of who might gain access to the information and the consequences thereof.

Physicians face an additional conundrum in dealing with patient-supplied information: How to counsel patients when, in some cases, the task should be the responsibility of a community resources representative? In addition, patients who request that certain information not be included in their personal health record, present a problem for a physician justifying a test or a procedure to a payer.

The consumerization of healthcare and patient engagement strategies employed to deliver better outcomes are driving the healthcare industry to open conversations that elevate the level of care delivered to patients. In addition, physicians need to demand more direction and initiate more discussions on how to deal with the opportunities and challenges presented in the era of patient-derived and pharmacogenomics data.

While improving patient-physician communication should always be a priority, discussing how and when to use genetic and patient-derived information is still a work in progress.

Dr. Furst is Vice President Clinical Consultants at Elsevier Clinical Solutions.