Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

A Whole New Way of Being Old: Book Review of The New Mobile Age

Posted on March 15, 2018 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The recently released overview of health care for the aging by Dr. Joseph Kvedar and his collaborators, The New Mobile Age: How Technology Will Extend the Healthspan and Optimize the Lifespan, is aimed at a wide audience of people who can potentially benefit: health care professionals and those who manage their clinics and hospitals, technologists interested in succeeding in this field, and policy makers. Your reaction to this book may depend on how well you have asserted the impact of your prefrontal cortex over your amygdala before reading the text–if your mood is calm you can see numerous possibilities and bright spots, whereas if you’re agitated you will latch onto the hefty barriers in the way.

Kvedar highlights, as foremost among the culture changes needed to handle aging well, is a view of aging as a positive and productive stage of life. Second to that comes design challenges: technologists must make devices and computer interfaces that handle affect, adapt smoothly to different individuals and their attitudes, and ultimately know both when to intervene and how to present healthy options. As an example, Chapter 8 presents two types of robots, one of which was accepted more by patients when it was “serious” and the other when it was “playful.” The nuances of interface design are bewildering.

The logical argument in The New Mobile Age proceeds somewhat like this:

  1. Wholesome and satisfying aging is possible, but particularly where chronic conditions are involved, it involves maintaining a healthful and balanced lifestyle, not just fixing disease.

  2. Support for health, particularly in old age, thus involves public health and socio-economic issues such as food, exercise, and especially social contacts.

  3. Each person requires tailored interventions, because his or her needs and desires are unique.

  4. Connected technology can help, but must adapt to the conditions and needs of the individual.

The challenges of health care technology emerged in my mind, during the reading of this book, as a whole new stage of design. Suppose we broadly and crudely characterize the first 35 years of computer design as number-crunching, and the next 35 years–after the spread of the personal computer–as one of augmenting human intellect (a phrase popularized by pioneer Douglas Engelbart).

We have recently entered a new era where computers use artificial intelligence for decision-making and predictions, going beyond what humans can anticipate or understand. (For instance, when I pulled up The New Mobile Age on Amazon.com, why did it suggest I check out a book about business and technology that I have already read, Machine, Platform, Crowd? There is probably no human at Amazon.com or elsewhere who could explain the algorithm that made the connection.)

So I am suggesting that an equally momentous shift will be required to fulfill Kvedar’s mandate. In addition to the previous tasks of number-crunching, augmenting human intellect, and predictive analytics, computers will need to integrate with human life in incredibly supple, subtle ways.

The task reminds me of self-driving cars, which business and tech observers assure us will replace human drivers in a foreseeable time span. As I write this paragraph, snow from a nor’easter is furiously swirling through the air. It is hard to imagine that any intelligence, whether human, AI, or alien, can safely navigate a car in that mess. Self-driving cars won’t catch on until computers can instantly handle real-world conditions perfectly–and that applies to technology for the aging too.

This challenge applies to physical services as well as emotional ones. For instance, Kvedar suggests in Chapter 8 that a robot could lift a person from a bed to a wheelchair. That’s obviously riskier and more nuanced than carting goods around a warehouse. And that robot is supposed to provide encouragement, bolster the spirits of the patient, and guide the patient toward healthful behavior as well.

Although I have no illusions about the difficulty of the tasks set before computers in health care, I believe the technologies offer enormous potential and cheer on the examples provided by Kvedar in his book. It’s important to note that the authors, while delineating the different aspects of conveying care to the aging, always start with a problem and a context, taking the interests of the individual into account, and then move to the technical parts of the solution.

Therefore, Kvedar brings us face to face with issues we cannot shut our eyes to, such as the widening gap between the increasing number of elderly people in the world and the decreasing number of young people who can care for them or pay for such care. A number of other themes appear that will be familiar to people following the health care field: the dominance of lifestyle-related chronic conditions among our diseases, the clunkiness and unfriendliness of most health-related systems (most notoriously the electronic health record systems used by doctors), the importance of understanding the impact of behavior and phenotypical data on health, but also the promise of genetic sequencing, and the importance of respecting the dignity and privacy of the people whose behavior we want to change.

And that last point applies to many aspects of accommodating diverse populations. Although this book is about the elderly, it’s not only they who are easily infantilized, dismissed, ignored, or treated inappropriately in the health care system: the same goes for the mentally ill, the disabled, LGBTQ people, youth, and many other types of patients.

The New Mobile Age highlights exemplary efforts by companies and agencies to use technology to meet the human needs of the aging. Kvedar’s own funder, Partners Healthcare, can afford to push innovation in this area because it is the dominant health care provider in the Boston area (where I live) and is flush with cash. When will every institution do these same things? The New Mobile Age helps to explain what we need in order to get to that point.

What Data Do You Need in Order to Guide Behavioral Change?

Posted on June 2, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

This is an exciting time for the health care field, as its aspirations toward value-based payments and behavioral responses to chronic conditions converge on a more and more precise solution. Dr. Joseph Kvedar has called this comprehensive approach connected health and has formed both a conference and a book around it. BaseHealth, a predictive analytics company in healthcare, has teamed up with TriVita to offer a consumer-based service around this approach, which combines access to peer-reviewed research with fine-tuned guidance that taps into personal health and behavioral data and leverages the individual interests of each participant.

I have previously written about BaseHealth’s assessment engine, which asks individuals for information about their activities, family history, and health conditions in order to evaluate their health profile and risk for common diseases. TriVita is a health coaching service with a wide-ranging assessment tool and a number of products, including cutely named supplements such as Joint Complex and Daily Cleanse. TriVita’s nutritionists, exercise coaches, and other staff are overseen by physicians, but their service is not medical: it does not enter the heavily regulated areas where clinicians practice.

I recently talked with BaseHealth’s CEO, Prakash Menon, and Dan Hoemke, its Vice President of Business Development. They describe BaseHealth’s predictive analytics as input that informs TriVita’s coaching service. What I found interesting is the sets of data that seem most useful for coaching and behavioral interventions.

In my earlier article, I wrote, “BaseHealth has trouble integrating EHR data.” Menon tells me that getting this data has become much easier over the past several months, because several companies have entered the market to gather and combine the data from different vendors. Still, BaseHealth focuses on a few sources of medical data, such as lab and biometric data. Overall, they focus on gathering data required to identify disease risk and guide behavior change, which in turn improves preventable conditions such as heart disease and diabetes.

Part of their choice springs from the philosophy driving BaseHealth’s model. Menon says, “BaseHealth wants to work with you before you have a chronic condition.” For instance, the American Diabetes Association estimated in 2012 that 86 million Americans over the age of 20 had prediabetes. Intervening before these people have developed the full condition is when behavioral change is easiest and most effective.

Certainly, BaseHealth wants to know your existing medical conditions. So they ask you about them when you sign up. Other vital signs, such as cholesterol, are also vital to BaseHealth’s analytics. Through a partnership with LabCo, a large diagnostics company in Europe, they are able to tap into lab systems to get these vital signs automatically. But users in the United States can enter them manually with little effort.

BaseHealth is not immune to the industry’s love affair with genetics and personalization, either. They take about 1500 genetic factors into account, helping them to quantify your risk of getting certain chronic conditions. But as a behavioral health service, Menon points out, BaseHealth is not designed to do much with genetic traits signifying a high chance of getting a disease. They deal with problems that you can do something about–preventable conditions. Menon cites a Health 2.0 presentation (see Figure 1) saying that our health can, on average, be attributed 60 percent to lifestyle, 30 percent to genetics, and 10 percent to clinical interventions. But genetics help to show what is achievable. Hoemke says BaseHealth likes to compare each person against the best she can be, whereas many sites just compare a user against the average population with similar health conditions.

Relative importance of health factors

Figure 1. Relative importance of health factors

BaseHealth gets most of its data from conditions known to you, your environment, family history, and more than 75 behavioral factors: your activity, food, over-the-counter meds, sleep activity, alcohol use, smoking, several measures of stress, etc. BaseHealth assessment recommendations and other insights are based on peer-reviewed research. BaseHealth will even point the individual to particular studies to provide the “why” for its recommendations.

So where does TriVita fit in? Hoemke says that BaseHealth has always stressed the importance of human intervention, refusing to fall into the fallacy that health can be achieved just through new technology. He also said that TriVita fits into the current trend of shifting accountability for health to the patient; he calls it a “health empowerment ecosystem.” As an example of the combined power of BaseHealth and TriVita, a patient can send his weight regularly to a coach, and both can view the implications of the changes in weight–such as changes in risk factors for various diseases–on charts. Some users make heavy use of the coaches, whereas others take the information and recommendations and feel they can follow their plan on their own.

As more and more companies enter connected health, we’ll get more data about what works. And even though BaseHealth and TriVita are confident they can achieve meaningful results with mostly patient-generated data, I believe that clinicians will use similar techniques to treat sicker people as well.