Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

From Makerspaces to Virtual Spaces: How 3D Changes Everything… – #HITsm Chat Topic

Posted on January 30, 2018 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

We’re excited to share the topic and questions for this week’s #HITsm chat happening Friday, 2/2 at Noon ET (9 AM PT). This week’s chat will be hosted by Chuck Webster, MD (@wareFLO) on the topic of “From Makerspaces to Virtual Spaces: How 3D Changes Everything…”

What do makerspaces, 3D-printing, and virtual & augmented reality have in common? Three-dimensional objects! Makerspaces, and their 3D printers, make 3D objects in the real world. Virtual & augmented reality are populated by virtual models of objects from physical real world.

At the recent RSNA meeting in Chicago, the same 3D models, of wounds, tumors, and proposed implants, could be viewed in either virtual or physical reality (via 3D printing). 3D printed models can be designed in virtual reality. Physical objects can be scanned and viewed in virtual reality.

What are the implications of this 3D printing / virtual reality connection? Well, for one thing, you’ll find a lot of virtual reality meetups in makerspaces (as occurs here in Columbus, at The Idea Foundary). Microsoft co-locates a “Mixed Reality” (VR + AR) space in its corporate makerspace.

But here is where I want to drive this. Makerspaces are inherently social, based on communities of peer-to-peer teaching and learning. However virtual reality has a loner stereotype, someone covering their eyes with electronics, and withdrawing from social interaction to explore, alone, fantastical, artificial landscapes.

The exception, in a big, big way, is social virtual reality. I wrote about this recently in my blog post Shared Social Virtual Reality Networking for Health, Healthcare, and Health IT Marketing. I won’t belabor the point here, except to say I am as excited about social virtual reality as a I was, and still am, about Twitter. In some ways, I’m reminded of the Blab and Firetalk group social video platforms (RIP!). A bunch of people, from anywhere in the world, can get together, virtually, to, well, do almost anything. Party in space. Watch movies underwater. Customize their avatars however they wish (yes, it can get freaky!)

If above seems like a bit of mishmash, I admit it does seem that way to me too. However, I didn’t want to call this HITsm tweet chat something like “Stuff @wareFLO Thinks Is Cool at The Moment.” So I thought hard, and came up with some connections!

PS. I’m bring my makerspace and virtual reality gear to HIMSS18! Look me up and check out this video preview!

Now for the topics we’ll be discussing during this week’s #HITsm chat. I hope you’ll join in on the discussion.

Topics for This Week’s #HITsm Chat:
T1: Did you ever make something (perhaps out of readily available household items!) that solved YOUR unique problem. How did you feel? Is there something there, about everyday people making stuff, that healthcare needs? #HITsm

T2: Have you tried out a virtual reality headset yet? Which one? What did you see? What was exciting? What was disappointing? How about augmented reality? (Lots of AR apps now on iOS) Same questions… #HITsm

T3: I’m basically an engineer who happened to go to med school. It’s how I got interested in workflow. But now I’m getting back into “mechatronics” (building robots, for example) I’m happy to share my expertise. Anyone wanna build something together? What? #HITsm

T4: What if all of us, in this Twitter chat, right now, by just pushing a button, could appear to each other, in real time, as holograms (think Star Trek or Star Wars) anywhere in the real or imaginary world, what place & setting would you chose? #HITsm

T5: What questions would you like to get answered about 3D printing and virtual/augmented reality? #HITsm

Bonus: How might 3D printing and virtual (or augmented) reality be used for health IT marketing & PR purposes? #HITsm

Upcoming #HITsm Chat Schedule
2/9 – The Role of HealthIT in Driving Payer Provider Employer Collaboration
Hosted by Heather Lavoie (@HSLavoie) from @Geneia

2/16 – TBD

2/23 – #HIMSS18
Hosted by #HIMSS18 Social Media Ambassadors

3/2 – Machine Learning and AI in Healthcare
Hosted by Corinne Stroum (@healthcora)

We look forward to learning from the #HITsm community! As always, let us know if you’d like to host a future #HITsm chat or if you know someone you think we should invite to host.

If you’re searching for the latest #HITsm chat, you can always find the latest #HITsm chat and schedule of chats here.

Key Articles in Health IT from 2017 (Part 2 of 2)

Posted on January 4, 2018 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article set a general context for health IT in 2017 and started through the year with a review of interesting articles and studies. We’ll finish the review here.

A thoughtful article suggests a positive approach toward health care quality. The author stresses the value of organic change, although using data for accountability has value too.

An article extolling digital payments actually said more about the out-of-control complexity of the US reimbursement system. It may or not be coincidental that her article appeared one day after the CommonWell Health Alliance announced an API whose main purpose seems to be to facilitate payment and other data exchanges related to law and regulation.

A survey by KLAS asked health care providers what they want in connected apps. Most apps currently just display data from a health record.

A controlled study revived the concept of Health Information Exchanges as stand-alone institutions, examining the effects of emergency departments using one HIE in New York State.

In contrast to many leaders in the new Administration, Dr. Donald Rucker received positive comments upon acceding to the position of National Coordinator. More alarm was raised about the appointment of Scott Gottlieb as head of the FDA, but a later assessment gave him high marks for his first few months.

Before Dr. Gottlieb got there, the FDA was already loosening up. The 21st Century Cures Act instructed it to keep its hands off many health-related digital technologies. After kneecapping consumer access to genetic testing and then allowing it back into the ring in 2015, the FDA advanced consumer genetics another step this year with approval for 23andMe tests about risks for seven diseases. A close look at another DNA site’s privacy policy, meanwhile, warns that their use of data exploits loopholes in the laws and could end up hurting consumers. Another critique of the Genetic Information Nondiscrimination Act has been written by Dr. Deborah Peel of Patient Privacy Rights.

Little noticed was a bill authorizing the FDA to be more flexible in its regulation of digital apps. Shortly after, the FDA announced its principles for approving digital apps, stressing good software development practices over clinical trials.

No improvement has been seen in the regard clinicians have for electronic records. Subjective reports condemned the notorious number of clicks required. A study showed they spend as much time on computer work as they do seeing patients. Another study found the ratio to be even worse. Shoving the job onto scribes may introduce inaccuracies.

The time spent might actually pay off if the resulting data could generate new treatments, increase personalized care, and lower costs. But the analytics that are critical to these advances have stumbled in health care institutions, in large part because of the perennial barrier of interoperability. But analytics are showing scattered successes, being used to:

Deloitte published a guide to implementing health care analytics. And finally, a clarion signal that analytics in health care has arrived: WIRED covers it.

A government cybersecurity report warns that health technology will likely soon contribute to the stream of breaches in health care.

Dr. Joseph Kvedar identified fruitful areas for applying digital technology to clinical research.

The Government Accountability Office, terror of many US bureaucracies, cam out with a report criticizing the sloppiness of quality measures at the VA.

A report by leaders of the SMART platform listed barriers to interoperability and the use of analytics to change health care.

To improve the lower outcomes seen by marginalized communities, the NIH is recruiting people from those populations to trust the government with their health data. A policy analyst calls on digital health companies to diversify their staff as well. Google’s parent company, Alphabet, is also getting into the act.

Specific technologies

Digital apps are part of most modern health efforts, of course. A few articles focused on the apps themselves. One study found that digital apps can improve depression. Another found that an app can improve ADHD.

Lots of intriguing devices are being developed:

Remote monitoring and telehealth have also been in the news.

Natural language processing and voice interfaces are becoming a critical part of spreading health care:

Facial recognition is another potentially useful technology. It can replace passwords or devices to enable quick access to medical records.

Virtual reality and augmented reality seem to have some limited applications to health care. They are useful foremost in education, but also for pain management, physical therapy, and relaxation.

A number of articles hold out the tantalizing promise that interoperability headaches can be cured through blockchain, the newest hot application of cryptography. But one analysis warned that blockchain will be difficult and expensive to adopt.

3D printing can be used to produce models for training purposes as well as surgical tools and implants customized to the patient.

A number of other interesting companies in digital health can be found in a Fortune article.

We’ll end the year with a news item similar to one that began the article: serious good news about the ability of Accountable Care Organizations (ACOs) to save money. I would also like to mention three major articles of my own:

I hope this review of the year’s articles and studies in health IT has helped you recall key advances or challenges, and perhaps flagged some valuable topics for you to follow. 2018 will continue to be a year of adjustment to new reimbursement realities touched off by the tax bill, so health IT may once again languish somewhat.

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 3 of 3)

Posted on November 17, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous segment of this article covered one of the crucial themes in health care today: simplifying technology’s interactions with individuals over health care. This segment finishes my coverage of this year’s Connected Health Conference with two more themes: improved data sharing and blockchains.

Keynote at Connected Health Conference

Keynote at Connected Health Conference

Improved data sharing
The third trend I’m pursuing is interoperability. If data collection is the oxygen that fuels connected health, data sharing is the trachea that brings it where it’s needed. Without interoperability, clinicians cannot aid patients in their homes, analysts cannot derive insights that inform treatments, and transitions to assisted living facilities or other environments will lead to poor care.

But the health care field is notoriously bad at data sharing. The usual explanation is that doctors want to make it hard for competitors to win away their patients. If that’s true, fee-for-value reimbursements will make them even more possessive. After all, under fee-for-value, clinicians are held accountable for patient outcomes over a long period of time. They won’t want to lose control of the patient. I first heard of this danger at a 2012 conference (described in the section titled “Low-hanging fruit signals a new path for cost savings”).

So the trade press routinely and ponderously reports that once again, years have gone by without much progress in data sharing. The US government recognizes that support for interoperability is unsatisfactory, and has recently changed the ONC certification program to focus on it.

Carla Kriwet, CEO of Connected Care and Health Informatics at Philips, was asked in her keynote Fireside Chat to rate the interoperability of health data on a scale from 0 to 10, and chose a measly 3. She declared that “we don’t believe in closed systems at all” and told me in an interview that Philips is committed to creating integrated solutions that work with any and all products. Although Philips devices are legendary in many domains, Kriwet wants customers to pay for outcomes, not devices.

For instance, Philips recently acquired the Wellcentive platform that allows better care in hospitals by adopting population health approaches that look at whole patient populations to find what works. The platform works with a wide range of input sources and is meant to understand patient populations, navigate care and activate patients. Philips also creates dashboards with output driven by artificial intelligence–the Philips IntelliVue Guardian solution with Early Warning Scoring (EWS)–that leverages predictive analytics to present critical information about patient deterioration to nurses and physicians. This lets them intervene quickly before an adverse event occurs, without the need for logging in repeatedly. (This is an example of another trend I cover in this article, the search for simpler interfaces.)

Kriwet also told me that Philips has incorporated the principles of agile programming throughout the company. Sprints of a few weeks develop their products, and “the boundary comes down” between R&D and the sales team.

I also met with Jon Michaeli, EVP of Strategic Partnerships with Medisafe, a company that I covered two years ago. Medisafe is one of a slew of companies that encourage medication adherence. Always intensely based on taking in data and engaging patients in a personalized way, Medisafe has upped the sophistication of their solution, partly by integrating with other technologies. One recent example is its Safety Net, provided by artificial intelligence platform Neura. For instance, if you normally cart your cell phone around with you, but it’s lying quiet from 10:00 PM until 6:00 AM, Safety Net may determine your reason for missing your bedtime dose at 11:00 PM was that you had already fallen asleep. If Safety Net sees recurring patterns of behavior, it will adjust reminder time automatically.

Medisafe also gives users the option of recording the medication adherence through sensors rather than responding to reminders. They can communicate over Bluetooth to a pill bottle cap (“iCap”) that replaces the standard medicine cap and lets the service know when you have opened the bottle. The iCap fits the vast majority of medicine bottles dispensed by U.S. pharmacies and costs only $20 ($40 for a pack of 2), so you can buy several and use them for as long as you’re taking your medicine.

On another level, Mivatek provides some of the low-level scaffolding to connected health by furnishing data from devices to systems developed by the company’s clients. Suppose, for instance, that a company is developing a system that responds to patients who fall. Mivatek can help them take input from a button on the patient’s phone, from a camera, from a fall detector, or anything else to which Mivatek can connect. The user can add a device to his system simply by taking a picture of the bar code with his phone.

Jorge Perdomo, Senior Vice President Corporate Strategy & Development at Mivatek, told me that these devices work with virtually all of the available protocols on the market that have been developed to promote interoperability. In supporting WiFi, Mivatek loads an agent into its system to provide an additional level of security. This prevents device hacking and creates an easy-to-install experience with no setup requirements.

Blockchains
Most famous as a key technological innovation supporting BitCoin, blockchains have a broad application as data stores that record transactions securely. They can be used in health care for granting permissions to data and other contractual matters. The enticement offered by this technology is that no central institution controls or stores the blockchain. One can distribute the responsibility for storage and avoid ceding control to one institution.

Blockchains do, however, suffer from inherent scaling problems by design: they grow linearly as people add transactions, the additions must be done synchronously, and the whole chain must be stored in its entirety. But for a limited set of participants and relatively rate updates (for instance, recording just the granting of permissions to data and not each chunk of data exchanged), the technology holds great promise.

Although I see a limited role for blockchains, the conference gave considerable bandwidth to the concept. In a keynote that was devoted to blockchains, Dr. Samir Damani described how one of his companies, MintHealth, planned to use them to give individuals control over health data that is currently held by clinicians or researchers–and withheld from the individuals themselves.

I have previously covered the importance patient health records, and the open source project spotlighted by that article, HIE of One, now intends to use blockchain in a manner similar to MintHealth. In both projects, the patient owns his own data. MintHealth adds the innovation of offering rewards for patients who share their data with researchers, all delivered through the blockchain. The reward system is quite intriguing, because it would create for the first time a real market for highly valuable patient data, and thus lead to more research use along with fair compensation for the patients. MintHealth’s reward system also fits the connected health vision of promoting healthy behavior on a daily basis, to reduce chronic illness and health care costs.

Conclusion
Although progress toward connected health comes in fits and starts, the Connected Health Conference is still a bright spot in health care each year. For the first time this year, Partners’ Center for Connected Health partnered with another organization, the Personal Connected Health Alliance, and the combination seems to be a positive one. Certain changes were noticeable: for instance, all the breakout sessions were panels, and the keynotes were punctuated by annoying ads. An interesting focus this year was wellness in aging, the topic of the final panel. One surprising difference was the absence of the patient advocates from the Society for Participatory Medicine whom I’m used to meeting each year at this conference, perhaps because they held their own conference the day before.

The Center for Connected Health’s Joseph Kvedar still ran the program team, and the themes were familiar from previous years. This conference has become my touchstone for understanding health IT, and it will continue to be the place to go to track the progress of health care reform from a technological standpoint.

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 2 of 3)

Posted on November 15, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first segment of this article introduced the themes of the Connected Health Conference and talked about the importance of validating what new technologies do using trials or studies like traditional medical advances. This segment continues my investigation into another major theme in health care: advanced interfaces.

Speaker from Validic at Connected Health Conference

Speaker from Validic at Connected Health Conference

Advanced interfaces
The compulsory picture of health care we’re accustomed to seeing, whenever we view hospital propaganda or marketing from health care companies, shows a patient in an awkward gown seated on an uncomfortable examination table. A doctor faces him or her full on–not a computer screen in site–exuding concern, wisdom, friendliness, and professionalism.

More and more, however, health sites are replacing this canonical photograph with one of a mobile phone screen speckled with indicators of our vital signs or thumbnail shot of our caregivers. The promise being conveyed is no longer care from a trusted clinician in the office, but instant access to all our information through a medium familiar to almost everyone everywhere–the personal mobile device.

But even touchscreen access to the world of the cloud is beginning to seem fusty. Typing in everything you eat with your thumbs, or even answering daily surveys about your mental state, gets old fast. As Dr. Yechiel Engelhard of TEVA said in his keynote, patients don’t want to put a lot of time into managing their illnesses, nor do doctors want to change their workflows. So I’m fascinated with connected health solutions that take the friction out of data collection and transmission.

One clear trend is the move to voice–or rather, I should say back to voice, because it is the original form of human communication for precise data. The popularity of Amazon Echo, along with Siri and similar interfaces, shows that this technology will hit a fever pitch soon. One research firm found that voice-triggered devices more than doubled in popularity between 2015 and 2016, and that more than half of Americans would like such a device in the home.

I recently covered a health care challenge using Amazon Alexa that demonstrates how the technology can power connected health solutions. Most of the finalists in the challenge were doing the things that the Connected Health Conference talks about incessantly: easy and frequent interactions with patients, analytics to uncover health problems, integration with health care providers, personalization, and so on.

Orbita is another company capitalizing on voice interfaces to deliver a range of connected health solutions, from simple medication reminders to complete care management applications for diabetes. I talked to CEO Bill Rogers, who explained that they provide a platform for integrating with AI engines provided by other services to carry out communication with individuals through whatever technology they have available. Thus, Orbita can talk through Echo, send SMS messages, interact with a fitness device or smart scale, or even deliver a reminder over a plain telephone interface.

One client of Orbita uses it platform to run a voice bot that talks to patients during their discharge process. The bot provides post-discharge care instructions and answers patients’ questions about things like pain management and surgery wound care. The results show that patients are more willing to ask questions of the bot than of a discharge nurse, perhaps because they’re not afraid of wasting someone’s time. Rogers also said services are improving their affective interfaces, which respond to the emotional tone of the patient.

Another trick to avoid complex interfaces is to gather as much data as possible from the patient’s behavior (with her consent, of course) to eliminate totally the need for her to manually enter data, or even press a button. Devices are getting closer to this kind of context-awareness. Following are some of the advances I enjoyed seeing at the Connected Health Conference.

  • PulseOn puts more health data collection into a wrist device than I’ve ever seen. Among the usual applications to fitness, they claim to detect atrial fibrillation and sleep apnea by shining a light on the user’s skin and measuring changes in reflections caused by variations in blood flow.
  • A finger-sized device called Gocap, from Common Sensing, measures insulin use and reports it over wireless connections to clinical care-takers. The device is placed over the needle end of an insulin pen, determines how much was injected by measuring the amount of fluid dispensed after a dose, and transmits care activity to clinicians through a companion app on the user’s smartphone. Thus, without having to enter any information by hand, people with diabetes can keep the clinicians up to date on their treatment.
  • One of the cleverest devices I saw was a comprehensive examination tool from Tyto Care. A small kit can carry the elements of a home health care exam, all focused on a cute little sphere that fits easily in the palm. Jeff Cutler, Chief Revenue Officer, showed me a simple check on the heart, ear, and throat that anyone can perform. You can do it with a doctor on the other end of a video connection, or save the data and send it to a doctor for later evaluation.

    Tyto Care has a home version that is currently being used and distributed by partners such as Heath Systems, providers, payers and employers, but will ultimately be available for sale to consumers for $299. They also offer a professional and remote clinic version that’s tailor-made for a school or assisted living facility.

A new Digital Therapeutics Alliance was announced just before the conference, hoping to promote more effective medical devices and allow solutions to scale up through such things as improving standards and regulations. Among other things, the alliance will encourage clinical trials, which I have already highlighted as critical.

Big advances were also announced by Validic, which I covered last year. Formerly a connectivity solution that unraveled the varying quasi-standard or non-standard protocols of different devices in order to take their data into electronic health records, Validic has created a new streaming API that allows much faster data transfers, at a much higher volume. On top of this platform they have built a notification service called Inform, which takes them from a networking solution to a part of the clinicians’ workflow.

Considerable new infrastructure is required to provide such services. For instance, like many medication adherence services, Validic can recognize when time has gone by without a patient reporting that’s he’s taken his pill. This level of monitoring requires storing large amounts of longitudinal data–and in fact, Validic is storing all transactions carried out over its platform. The value of such a large data set for discovering future health care solutions through analytics can make data scientists salivate.

The next segment of this article wraps up coverage of the conference with two more themes.

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 1 of 3)

Posted on November 13, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Attendees at each Connected Health Conference know by now the architecture of health reform promoted there. The term “connected health” has been associated with a sophisticated amalgam of detailed wellness plans, modern sensors, continuous data collection in the field, patient control over data, frequent alerts and reminders, and analytics to create a learning health care system. The mix remains the same each year, so I go each time to seek out progress toward the collective goal. This year, I’ve been researching what’s happening in these areas:

  • Validation through clinical trials
  • Advanced interfaces to make user interaction easier
  • Improved data sharing (interoperability)
  • Blockchains

Panel at Connected Health Conference

Panel at Connected Health Conference

There were a few other trends of interest, which I’ll mention briefly here. Virtual reality (VR) and augmented reality (AR) turned up at some exhibitor booths and were the topic of a panel. Some of these technologies run on generic digital devices–such as the obsession-inducing Pokémon GO game–while others require special goggles such as the Oculus Rift (the first VR technology to show a promise for widespread adoption, and now acquired by Facebook) or Microsoft’s HoloLens. VR shuts out the user’s surroundings and presents her with a 360-degree fantasy world, whereas AR imposes information or images on the surroundings. Both VR and AR are useful for teaching, such as showing an organ in 3D organ in front of a medical student on a HoloLens, and rotating it or splitting it apart to show details.

I haven’t yet mentioned the popular buzzword “telehealth,” because it’s subsumed under the larger goal of connected health. I do use the term “artificial intelligence,” certainly a phrase that has gotten thrown around too much, and whose meaning is subject of much dissension. Everybody wants to claim the use of artificial intelligence, just as a few years ago everybody talked about “the cloud.” At the conference, a panel of three experts took up the topic and gave three different definitions of the term. Rather than try to identify the exact algorithms used by each product in this article and parse out whether they constitute “real” artificial intelligence, I go ahead and use the term as my interviewees use it.

Exhibition hall at Connected Health Conference

Exhibition hall at Connected Health Conference

Let’s look now at my main research topics.

Validation through clinical trials
Health apps and consumer devices can be marketed like vitamin pills, on vague impressions that they’re virtuous and that doing something is better than doing nothing. But if you want to hook into the movement for wellness–connected health–you need to prove your value to the whole ecosystem of clinicians and caretakers. The consumer market just doesn’t work for serious health care solutions. Expecting an individual to pay for a service or product would limit you to those who can afford it out-of-pocket, and who are concerned enough about wellness to drag out their wallets.

So a successful business model involves broaching the gates of Mordor and persuading insurers or clinicians to recommend your solution. And these institutions won’t budge until you have trials or studies showing that you actually make a difference–and that you won’t hurt anybody.

A few savvy app and device developers build in such studies early in their existence. For instance, last year I covered a typical connected health solution called Twine Health, detailing their successful diabetes and hypertension trials. Twine Health combines the key elements that one finds all over the Connected Health Conference: a care plan, patient tracking, data analysis, and regular check-ins. Their business model is to work with employer-owned health plans, and to expand to clinicians as they gradually migrate to fee-for-value reimbursement.

I sense that awareness is growing among app and device developers that the way to open doors in health care is to test their solutions rigorously and objectively. But I haven’t found many who do so yet.

In the next segment of this article continues my exploration of the key themes I identified at the start of this article.

Google Glass Competitor Adds Augmented Reality

Posted on September 24, 2013 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

We’ve written a number of times about the power and potential of Google Glass in healthcare. I have little doubt that Google has started a whole new computing platform with Google Glass. However, a year or so ago Kyle Samani from Pristine suggested to me that some of the Google Glass competitors could be even more powerful with Google Glass. Now that Pristine is deep into the development of their Google Glass product, I wonder if Kyle’s views have changed. Personally, I’m growing to think that he could be right.

I recently came across the Google Glass competitor META.01. It’s a pretty unique product that adds augmented reality to the experience of eyeware computing. Plus, they say they’re working on making the eyeware “fashion-conscious.” This point is what many are waiting for with eyeware computing.

Instead of telling you about their product, this video does a good job showing it:

I think the future of eyeware computing is bright and will benefit healthcare. Google has definitely done a great job creating the space, but I won’t be surprised if their competitors end up defining it.