Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 3 of 3)

Posted on November 17, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous segment of this article covered one of the crucial themes in health care today: simplifying technology’s interactions with individuals over health care. This segment finishes my coverage of this year’s Connected Health Conference with two more themes: improved data sharing and blockchains.

Keynote at Connected Health Conference

Keynote at Connected Health Conference

Improved data sharing
The third trend I’m pursuing is interoperability. If data collection is the oxygen that fuels connected health, data sharing is the trachea that brings it where it’s needed. Without interoperability, clinicians cannot aid patients in their homes, analysts cannot derive insights that inform treatments, and transitions to assisted living facilities or other environments will lead to poor care.

But the health care field is notoriously bad at data sharing. The usual explanation is that doctors want to make it hard for competitors to win away their patients. If that’s true, fee-for-value reimbursements will make them even more possessive. After all, under fee-for-value, clinicians are held accountable for patient outcomes over a long period of time. They won’t want to lose control of the patient. I first heard of this danger at a 2012 conference (described in the section titled “Low-hanging fruit signals a new path for cost savings”).

So the trade press routinely and ponderously reports that once again, years have gone by without much progress in data sharing. The US government recognizes that support for interoperability is unsatisfactory, and has recently changed the ONC certification program to focus on it.

Carla Kriwet, CEO of Connected Care and Health Informatics at Philips, was asked in her keynote Fireside Chat to rate the interoperability of health data on a scale from 0 to 10, and chose a measly 3. She declared that “we don’t believe in closed systems at all” and told me in an interview that Philips is committed to creating integrated solutions that work with any and all products. Although Philips devices are legendary in many domains, Kriwet wants customers to pay for outcomes, not devices.

For instance, Philips recently acquired the Wellcentive platform that allows better care in hospitals by adopting population health approaches that look at whole patient populations to find what works. The platform works with a wide range of input sources and is meant to understand patient populations, navigate care and activate patients. Philips also creates dashboards with output driven by artificial intelligence–the Philips IntelliVue Guardian solution with Early Warning Scoring (EWS)–that leverages predictive analytics to present critical information about patient deterioration to nurses and physicians. This lets them intervene quickly before an adverse event occurs, without the need for logging in repeatedly. (This is an example of another trend I cover in this article, the search for simpler interfaces.)

Kriwet also told me that Philips has incorporated the principles of agile programming throughout the company. Sprints of a few weeks develop their products, and “the boundary comes down” between R&D and the sales team.

I also met with Jon Michaeli, EVP of Strategic Partnerships with Medisafe, a company that I covered two years ago. Medisafe is one of a slew of companies that encourage medication adherence. Always intensely based on taking in data and engaging patients in a personalized way, Medisafe has upped the sophistication of their solution, partly by integrating with other technologies. One recent example is its Safety Net, provided by artificial intelligence platform Neura. For instance, if you normally cart your cell phone around with you, but it’s lying quiet from 10:00 PM until 6:00 AM, Safety Net may determine your reason for missing your bedtime dose at 11:00 PM was that you had already fallen asleep. If Safety Net sees recurring patterns of behavior, it will adjust reminder time automatically.

Medisafe also gives users the option of recording the medication adherence through sensors rather than responding to reminders. They can communicate over Bluetooth to a pill bottle cap (“iCap”) that replaces the standard medicine cap and lets the service know when you have opened the bottle. The iCap fits the vast majority of medicine bottles dispensed by U.S. pharmacies and costs only $20 ($40 for a pack of 2), so you can buy several and use them for as long as you’re taking your medicine.

On another level, Mivatek provides some of the low-level scaffolding to connected health by furnishing data from devices to systems developed by the company’s clients. Suppose, for instance, that a company is developing a system that responds to patients who fall. Mivatek can help them take input from a button on the patient’s phone, from a camera, from a fall detector, or anything else to which Mivatek can connect. The user can add a device to his system simply by taking a picture of the bar code with his phone.

Jorge Perdomo, Senior Vice President Corporate Strategy & Development at Mivatek, told me that these devices work with virtually all of the available protocols on the market that have been developed to promote interoperability. In supporting WiFi, Mivatek loads an agent into its system to provide an additional level of security. This prevents device hacking and creates an easy-to-install experience with no setup requirements.

Blockchains
Most famous as a key technological innovation supporting BitCoin, blockchains have a broad application as data stores that record transactions securely. They can be used in health care for granting permissions to data and other contractual matters. The enticement offered by this technology is that no central institution controls or stores the blockchain. One can distribute the responsibility for storage and avoid ceding control to one institution.

Blockchains do, however, suffer from inherent scaling problems by design: they grow linearly as people add transactions, the additions must be done synchronously, and the whole chain must be stored in its entirety. But for a limited set of participants and relatively rate updates (for instance, recording just the granting of permissions to data and not each chunk of data exchanged), the technology holds great promise.

Although I see a limited role for blockchains, the conference gave considerable bandwidth to the concept. In a keynote that was devoted to blockchains, Dr. Samir Damani described how one of his companies, MintHealth, planned to use them to give individuals control over health data that is currently held by clinicians or researchers–and withheld from the individuals themselves.

I have previously covered the importance patient health records, and the open source project spotlighted by that article, HIE of One, now intends to use blockchain in a manner similar to MintHealth. In both projects, the patient owns his own data. MintHealth adds the innovation of offering rewards for patients who share their data with researchers, all delivered through the blockchain. The reward system is quite intriguing, because it would create for the first time a real market for highly valuable patient data, and thus lead to more research use along with fair compensation for the patients. MintHealth’s reward system also fits the connected health vision of promoting healthy behavior on a daily basis, to reduce chronic illness and health care costs.

Conclusion
Although progress toward connected health comes in fits and starts, the Connected Health Conference is still a bright spot in health care each year. For the first time this year, Partners’ Center for Connected Health partnered with another organization, the Personal Connected Health Alliance, and the combination seems to be a positive one. Certain changes were noticeable: for instance, all the breakout sessions were panels, and the keynotes were punctuated by annoying ads. An interesting focus this year was wellness in aging, the topic of the final panel. One surprising difference was the absence of the patient advocates from the Society for Participatory Medicine whom I’m used to meeting each year at this conference, perhaps because they held their own conference the day before.

The Center for Connected Health’s Joseph Kvedar still ran the program team, and the themes were familiar from previous years. This conference has become my touchstone for understanding health IT, and it will continue to be the place to go to track the progress of health care reform from a technological standpoint.

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 2 of 3)

Posted on November 15, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first segment of this article introduced the themes of the Connected Health Conference and talked about the importance of validating what new technologies do using trials or studies like traditional medical advances. This segment continues my investigation into another major theme in health care: advanced interfaces.

Speaker from Validic at Connected Health Conference

Speaker from Validic at Connected Health Conference

Advanced interfaces
The compulsory picture of health care we’re accustomed to seeing, whenever we view hospital propaganda or marketing from health care companies, shows a patient in an awkward gown seated on an uncomfortable examination table. A doctor faces him or her full on–not a computer screen in site–exuding concern, wisdom, friendliness, and professionalism.

More and more, however, health sites are replacing this canonical photograph with one of a mobile phone screen speckled with indicators of our vital signs or thumbnail shot of our caregivers. The promise being conveyed is no longer care from a trusted clinician in the office, but instant access to all our information through a medium familiar to almost everyone everywhere–the personal mobile device.

But even touchscreen access to the world of the cloud is beginning to seem fusty. Typing in everything you eat with your thumbs, or even answering daily surveys about your mental state, gets old fast. As Dr. Yechiel Engelhard of TEVA said in his keynote, patients don’t want to put a lot of time into managing their illnesses, nor do doctors want to change their workflows. So I’m fascinated with connected health solutions that take the friction out of data collection and transmission.

One clear trend is the move to voice–or rather, I should say back to voice, because it is the original form of human communication for precise data. The popularity of Amazon Echo, along with Siri and similar interfaces, shows that this technology will hit a fever pitch soon. One research firm found that voice-triggered devices more than doubled in popularity between 2015 and 2016, and that more than half of Americans would like such a device in the home.

I recently covered a health care challenge using Amazon Alexa that demonstrates how the technology can power connected health solutions. Most of the finalists in the challenge were doing the things that the Connected Health Conference talks about incessantly: easy and frequent interactions with patients, analytics to uncover health problems, integration with health care providers, personalization, and so on.

Orbita is another company capitalizing on voice interfaces to deliver a range of connected health solutions, from simple medication reminders to complete care management applications for diabetes. I talked to CEO Bill Rogers, who explained that they provide a platform for integrating with AI engines provided by other services to carry out communication with individuals through whatever technology they have available. Thus, Orbita can talk through Echo, send SMS messages, interact with a fitness device or smart scale, or even deliver a reminder over a plain telephone interface.

One client of Orbita uses it platform to run a voice bot that talks to patients during their discharge process. The bot provides post-discharge care instructions and answers patients’ questions about things like pain management and surgery wound care. The results show that patients are more willing to ask questions of the bot than of a discharge nurse, perhaps because they’re not afraid of wasting someone’s time. Rogers also said services are improving their affective interfaces, which respond to the emotional tone of the patient.

Another trick to avoid complex interfaces is to gather as much data as possible from the patient’s behavior (with her consent, of course) to eliminate totally the need for her to manually enter data, or even press a button. Devices are getting closer to this kind of context-awareness. Following are some of the advances I enjoyed seeing at the Connected Health Conference.

  • PulseOn puts more health data collection into a wrist device than I’ve ever seen. Among the usual applications to fitness, they claim to detect atrial fibrillation and sleep apnea by shining a light on the user’s skin and measuring changes in reflections caused by variations in blood flow.
  • A finger-sized device called Gocap, from Common Sensing, measures insulin use and reports it over wireless connections to clinical care-takers. The device is placed over the needle end of an insulin pen, determines how much was injected by measuring the amount of fluid dispensed after a dose, and transmits care activity to clinicians through a companion app on the user’s smartphone. Thus, without having to enter any information by hand, people with diabetes can keep the clinicians up to date on their treatment.
  • One of the cleverest devices I saw was a comprehensive examination tool from Tyto Care. A small kit can carry the elements of a home health care exam, all focused on a cute little sphere that fits easily in the palm. Jeff Cutler, Chief Revenue Officer, showed me a simple check on the heart, ear, and throat that anyone can perform. You can do it with a doctor on the other end of a video connection, or save the data and send it to a doctor for later evaluation.

    Tyto Care has a home version that is currently being used and distributed by partners such as Heath Systems, providers, payers and employers, but will ultimately be available for sale to consumers for $299. They also offer a professional and remote clinic version that’s tailor-made for a school or assisted living facility.

A new Digital Therapeutics Alliance was announced just before the conference, hoping to promote more effective medical devices and allow solutions to scale up through such things as improving standards and regulations. Among other things, the alliance will encourage clinical trials, which I have already highlighted as critical.

Big advances were also announced by Validic, which I covered last year. Formerly a connectivity solution that unraveled the varying quasi-standard or non-standard protocols of different devices in order to take their data into electronic health records, Validic has created a new streaming API that allows much faster data transfers, at a much higher volume. On top of this platform they have built a notification service called Inform, which takes them from a networking solution to a part of the clinicians’ workflow.

Considerable new infrastructure is required to provide such services. For instance, like many medication adherence services, Validic can recognize when time has gone by without a patient reporting that’s he’s taken his pill. This level of monitoring requires storing large amounts of longitudinal data–and in fact, Validic is storing all transactions carried out over its platform. The value of such a large data set for discovering future health care solutions through analytics can make data scientists salivate.

The next segment of this article wraps up coverage of the conference with two more themes.

Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 1 of 3)

Posted on November 13, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Attendees at each Connected Health Conference know by now the architecture of health reform promoted there. The term “connected health” has been associated with a sophisticated amalgam of detailed wellness plans, modern sensors, continuous data collection in the field, patient control over data, frequent alerts and reminders, and analytics to create a learning health care system. The mix remains the same each year, so I go each time to seek out progress toward the collective goal. This year, I’ve been researching what’s happening in these areas:

  • Validation through clinical trials
  • Advanced interfaces to make user interaction easier
  • Improved data sharing (interoperability)
  • Blockchains

Panel at Connected Health Conference

Panel at Connected Health Conference

There were a few other trends of interest, which I’ll mention briefly here. Virtual reality (VR) and augmented reality (AR) turned up at some exhibitor booths and were the topic of a panel. Some of these technologies run on generic digital devices–such as the obsession-inducing Pokémon GO game–while others require special goggles such as the Oculus Rift (the first VR technology to show a promise for widespread adoption, and now acquired by Facebook) or Microsoft’s HoloLens. VR shuts out the user’s surroundings and presents her with a 360-degree fantasy world, whereas AR imposes information or images on the surroundings. Both VR and AR are useful for teaching, such as showing an organ in 3D organ in front of a medical student on a HoloLens, and rotating it or splitting it apart to show details.

I haven’t yet mentioned the popular buzzword “telehealth,” because it’s subsumed under the larger goal of connected health. I do use the term “artificial intelligence,” certainly a phrase that has gotten thrown around too much, and whose meaning is subject of much dissension. Everybody wants to claim the use of artificial intelligence, just as a few years ago everybody talked about “the cloud.” At the conference, a panel of three experts took up the topic and gave three different definitions of the term. Rather than try to identify the exact algorithms used by each product in this article and parse out whether they constitute “real” artificial intelligence, I go ahead and use the term as my interviewees use it.

Exhibition hall at Connected Health Conference

Exhibition hall at Connected Health Conference

Let’s look now at my main research topics.

Validation through clinical trials
Health apps and consumer devices can be marketed like vitamin pills, on vague impressions that they’re virtuous and that doing something is better than doing nothing. But if you want to hook into the movement for wellness–connected health–you need to prove your value to the whole ecosystem of clinicians and caretakers. The consumer market just doesn’t work for serious health care solutions. Expecting an individual to pay for a service or product would limit you to those who can afford it out-of-pocket, and who are concerned enough about wellness to drag out their wallets.

So a successful business model involves broaching the gates of Mordor and persuading insurers or clinicians to recommend your solution. And these institutions won’t budge until you have trials or studies showing that you actually make a difference–and that you won’t hurt anybody.

A few savvy app and device developers build in such studies early in their existence. For instance, last year I covered a typical connected health solution called Twine Health, detailing their successful diabetes and hypertension trials. Twine Health combines the key elements that one finds all over the Connected Health Conference: a care plan, patient tracking, data analysis, and regular check-ins. Their business model is to work with employer-owned health plans, and to expand to clinicians as they gradually migrate to fee-for-value reimbursement.

I sense that awareness is growing among app and device developers that the way to open doors in health care is to test their solutions rigorously and objectively. But I haven’t found many who do so yet.

In the next segment of this article continues my exploration of the key themes I identified at the start of this article.

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 3 of 3)

Posted on October 20, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Earlier parts of this article set the stage for understanding what the Alexa Diabetes Challenge is trying to achieve and how some finalists interpreted the mandate. We examine three more finalists in this final section.

DiaBetty from the University of Illinois-Chicago

DiaBetty focuses on a single, important aspect of diabetes: the effect of depression on the course of the disease. This project, developed by the Department of Psychiatry at the University of Illinois-Chicago, does many of the things that other finalists in this article do–accepting data from EHRs, dialoguing with the individual, presenting educational materials on nutrition and medication, etc.–but with the emphasis on inquiring about mood and handling the impact that depression-like symptoms can have on behavior that affects Type 2 diabetes.

Olu Ajilore, Associate Professor and co-director of the CoNECt lab, told me that his department benefited greatly from close collaboration with bioengineering and computer science colleagues who, before DiaBetty, worked on another project that linked computing with clinical needs. Although they used some built-in capabilities of the Alexa, they may move to Lex or another AI platform and build a stand-alone device. Their next step is to develop reliable clinical trials, checking the effect of DiaBetty on health outcomes such as medication compliance, visits, and blood sugar levels, as well as cost reductions.

T2D2 from Columbia University

Just as DiaBetty explores the impact of mood on diabetes, T2D2 (which stands for “Taming Type 2 Diabetes, Together”) focuses on nutrition. Far more than sugar intake is involved in the health of people with diabetes. Elliot Mitchell, a PhD student who led the T2D2 team under Assistant Professor Lena Mamykina in the Department of Biomedical Informatics, told me that the balance of macronutrients (carbohydrates, fat, and protein) is important.

T2D2 is currently a prototype, developed as a combination of Alexa Skill and a chatbot based on Lex. The Alexa Skills Kit handle voice interactions. Both the Skill and the chatbot communicate with a back end that handles accounts and logic. Although related Columbia University technology in diabetes self-management is used, both the NLP and the voice interface were developed specifically for the Alexa Diabetes Challenge. The T2D2 team included people from the disciplines of computer interaction, data science, nursing, and behavioral nutrition.

The user invokes Alexa to tell it blood sugar values and the contents of meals. T2D2, in response, offers recipe recommendations and other advice. Like many of the finalists in this article, it looks back at meals over time, sees how combinations of nutrients matched changes in blood sugar, and personalizes its food recommendations.

For each patient, before it gets to know that patient’s diet, T2D2 can make food recommendations based on what is popular in their ZIP code. It can change these as it watches the patient’s choices and records comments to recommendations (for instance, “I don’t like that food”).

Data is also anonymized and aggregated for both recommendations and future research.

The care team and family caregivers are also involved, although less intensely than some other finalists do. The patient can offer caregivers a one-page report listing a plot of blood sugar by time and day for the previous two weeks, along with goals and progress made, and questions. The patient can also connect her account and share key medical information with family and friends, a feature called the Supportive Network.

The team’s next phase is run studies to evaluable some of assumptions they made when developing T2D2, and improve it for eventual release into the field.

Sugarpod from Wellpepper

I’ll finish this article with the winner of the challenge, already covered by an earlier article. Since the publication of the article, according to the founder and CEO of Wellpepper, Anne Weiler, the company has integrated some of Sugarpod functions into a bathroom scale. When a person stands on the scale, it takes an image of their feet and uploads it to sites that both the individual and their doctor can view. A machine learning image classifier can check the photo for problems such as diabetic foot ulcers. The scale interface can also ask the patient for quick information such as whether they took their medication and what their blood sugar is. Extended conversations are avoided, under the assumption that people don’t want to have them in the bathroom. The company designed its experiences to be integrated throughout the person’s day: stepping on the scale and answering a few questions in the morning, interacting with the care plan on a mobile device at work, and checking notifications and messages with an Echo device in the evening.

Any machine that takes pictures can arouse worry when installed in a bathroom. While taking the challenge and talking to people with diabetes, Wellpepper learned to add a light that goes on when the camera is taking a picture.

This kind of responsiveness to patient representatives in the field will determine the success of each of the finalists in this challenge. They all strive for behavioral change through connected health, and this strategy is completely reliant on engagement, trust, and collaboration by the person with a chronic illness.

The potential of engagement through voice is just beginning to be tapped. There is evidence, for instance, that serious illnesses can be diagnosed by analyzing voice patterns. As we come up on the annual Connected Health Conference this month, I will be interested to see how many participating developers share the common themes that turned up during the Alexa Diabetes Challenge.

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 2 of 3)

Posted on October 19, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article introduced the problems of computer interfaces in health care and mentioned some current uses for natural language processing (NLP) for apps aimed at clinicians. I also summarized the common goals, problems, and solutions I found among the five finalists in the Alexa Diabetes Challenge. This part of the article shows the particular twist given by each finalist.

My GluCoach from HCL America in Partnership With Ayogo

There are two levels from which to view My GluCoach. On one level, it’s an interactive tool exemplifying one of the goals I listed earlier–intense engagement with patients over daily behavior–as well as the theme of comprehensivenesss. The interactions that My GluCoach offers were divided into three types by Abhishek Shankar, a Vice President at HCL Technologies America:

  • Teacher: the service can answer questions about diabetes and pull up stored educational materials

  • Coach: the service can track behavior by interacting with devices and prompt the patient to eat differently or go out for exercise. In addition to asking questions, a patient can set up Alexa to deliver alarms at particular times, a feature My GluCoach uses to deliver advice.

  • Assistant: provide conveniences to the patient, such as ordering a cab to take her to an appointment.

On a higher level, My GluCoach fits into broader services offered to health care institutions by HCL Technologies as part of a population health program. In creating the service HCL partnered with Ayogo, which develops a mobile platform for patient engagement and tracking. HCL has also designed the service as a general health care platform that can be expanded over the next six to twelve months to cover medical conditions besides diabetes.

Another theme I discussed earlier, interactions with outside data and the use of machine learning, are key to my GluCoach. For its demo at the challenge, My GluCoach took data about exercise from a Fitbit. It can potentially work with any device that shares information, and HCL plans to integrate the service with common EHRs. As My GluCoach gets to know the individual who uses it over months and years, it can tailor its responses more and more intelligently to the learning style and personality of the patient.

Patterns of eating, medical compliance, and other data are not the only input to machine learning. Shankar pointed out that different patients require different types of interventions. Some simply want to be given concrete advice and told what to do. Others want to be presented with information and then make their own decisions. My GluCoach will hopefully adapt to whatever style works best for the particular individual. This affective response–together with a general tone of humor and friendliness–will win the trust of the individual.

PIA from Ejenta

PIA, which stands for “personal intelligent agent,” manages care plans, delivering information to the affected patients as well as their care teams and concerned relatives. It collects medical data and draws conclusions that allow it to generate alerts if something seems wrong. Patients can also ask PIA how they are doing, and the agent will respond with personalized feedback and advice based on what the agent has learned about them and their care plan.

I talked to Rachna Dhamija, who worked on a team that developed PIA as the founder and CEO of Ejenta. (The name Ejenta is a version of the word “agent” that entered the Bengali language as slang.) She said that the AI technology had been licensed from NASA, which had developed it to monitor astronauts’ health and other aspects of flights. Ejenta helped turn it into a care coordination tool with interfaces for the web and mobile devices at a major HMO to treat patients with chronic heart failure and high-risk pregnancies. Ejenta expanded their platform to include an Alexa interface for the diabetes challenge.

As a care management tool, PIA records targets such as glucose levels, goals, medication plans, nutrition plans, and action parameters such as how often to take measurements using the devices. Each caregiver, along the patient, has his or her own agent, and caregivers can monitor multiple patients. The patient has very granular control over sharing, telling PIA which kind of data can be sent to each caretaker. Access rights must be set on the web or a mobile device, because allowing Alexa to be used for that purpose might let someone trick the system into thinking he was the patient.

Besides Alexa, PIA takes data from devices (scales, blood glucose monitors, blood pressure monitors, etc.) and from EHRs in a HIPAA-compliant method. Because the service cannot wake up Alexa, it currently delivers notifications, alerts, and reminders by sending a secure message to the provider’s agent. The provider can then contact the patient by email or mobile phone. The team plans to integrate PIA with an Alexa notifications feature in the future, so that PIA can proactively communicate with the patient via Alexa.

PIA goes beyond the standard rules for alerts, allowing alerts and reminders to be customized based on what it learns about the patient. PIA uses machine learning to discover what is normal activity (such as weight fluctuations) for each patient and to make predictions based on the data, which can be shared with the care team.

The final section of this article covers DiaBetty, T2D2, and Sugarpod, the remaining finalists.

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 1 of 3)

Posted on October 16, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The leading pharmaceutical and medical company Merck, together with Amazon Web Services, has recently been exploring the potential health impacts of voice interfaces and natural language processing (NLP) through an Alexa Diabetes Challenge. I recently talked to the five finalists in this challenge. This article explores the potential of new interfaces to transform the handling of chronic disease, and what the challenge reveals about currently available technology.

Alexa, of course, is the ground-breaking system that brings everyday voice interaction with computers into the home. Most of its uses are trivial (you can ask about today’s weather or change channels on your TV), but one must not underestimate the immense power of combining artificial intelligence with speech, one of the most basic and essential human activities. The potential of this interface for disabled or disoriented people is particularly intriguing.

The diabetes challenge is a nice focal point for exploring the more serious contribution made by voice interfaces and NLP. Because of the alarming global spread of this illness, the challenge also presents immediate opportunities that I hope the participants succeed in productizing and releasing into the field. Using the challenge’s published criteria, the judges today announced Sugarpod from Wellpepper as the winner.

This article will list some common themes among the five finalists, look at the background about current EHR interfaces and NLP, and say a bit about the unique achievement of each finalist.

Common themes

Overlapping visions of goals, problems, and solutions appeared among the finalists I interviewed for the diabetes challenge:

  • A voice interface allows more frequent and easier interactions with at-risk individuals who have chronic conditions, potentially achieving the behavioral health goal of helping a person make the right health decisions on a daily or even hourly basis.

  • Contestants seek to integrate many levels of patient intervention into their tools: responding to questions, collecting vital signs and behavioral data, issuing alerts, providing recommendations, delivering educational background material, and so on.

  • Services in this challenge go far beyond interactions between Alexa and the individual. The systems commonly anonymize and aggregate data in order to perform analytics that they hope will improve the service and provide valuable public health information to health care providers. They also facilitate communication of crucial health data between the individual and her care team.

  • Given the use of data and AI, customization is a big part of the tools. They are expected to determine the unique characteristics of each patient’s disease and behavior, and adapt their advice to the individual.

  • In addition to Alexa’s built-in language recognition capabilities, Amazon provides the Lex service for sophisticated text processing. Some contestants used Lex, while others drew on other research they had done building their own natural language processing engines.

  • Alexa never initiates a dialog, merely responding when the user wakes it up. The device can present a visual or audio notification when new material is present, but it still depends on the user to request the content. Thus, contestants are using other channels to deliver reminders and alerts such as messaging on the individual’s cell phone or alerting a provider.

  • Alexa is not HIPAA-compliant, but may achieve compliance in the future. This would help health services turn their voice interfaces into viable products and enter the mainstream.

Some background on interfaces and NLP

The poor state of current computing interfaces in the medical field is no secret–in fact, it is one of the loudest and most insistent complaints by doctors, such as on sites like KevinMD. You can visit Healthcare IT News or JAMA regularly and read the damning indictments.

Several factors can be blamed for this situation, including unsophisticated electronic health records (EHRs) and arbitrary reporting requirements by Centers for Medicare & Medicaid Services (CMS). Natural language processing may provide one of the technical solutions to these problems. The NLP services by Nuance are already famous. An encouraging study finds substantial time savings through using NLP to enter doctor’s insights. And on the other end–where doctors are searching the notes they previously entered for information–a service called Butter.ai uses NLP for intelligent searches. Unsurprisingly, the American Health Information Management Association (AHIMA) looks forward to the contributions of NLP.

Some app developers are now exploring voice interfaces and NLP on the patient side. I covered two such companies, including the one that ultimately won the Alexa Diabetes Challenge, in another article. In general, developers using these interfaces hope to eliminate the fuss and abstraction in health apps that frustrate many consumers, thereby reaching new populations and interacting with them more frequently, with deeper relationships.

The next two parts of this article turn to each of the five finalists, to show the use they are making of Alexa.

Wellpepper and SimplifiMed Meet the Patients Where They Are Through Modern Interaction Techniques

Posted on August 9, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Over the past few weeks I found two companies seeking out natural and streamlined ways to connect patients with their doctors. Many of us have started using web portals for messaging–a stodgy communication method that involves logins and lots of clicking, often just for an outcome such as message “Test submitted. No further information available.” Web portals are better than unnecessary office visits or days of playing phone tag, and so are the various secure messaging apps (incompatible with one another, unfortunately) found in the online app stores. But Wellpepper and SimplifiMed are trying to bring us a bit further into the twenty-first century, through voice interfaces and natural language processing.

Wellpepper’s Sugarpod

Wellpepper recently ascended to finalist status in the Alexa Diabetes Challenge, which encourages research into the use of Amazon.com’s popular voice-activated device, Alexa, to improve the lives of people with Type 2 Diabetes. For this challenge, Wellpepper enhanced its existing service to deliver messages over Amazon Echo and interview patients. Wellpepper’s entry in the competition is an integrated care plan called Sugarpod.

The Wellpepper platform is organized around a care plan, and covers the entire cycle of treatment, such as delivering information to patients, managing their medications and food diaries, recording information from patients in the health care provider’s EHR, helping them prepare for surgery, and more. Messages adapt to the patient’s condition, attempting to present the right tone for adherent versus non-adherent patients. The data collected can be used for analytics benefitting both the provider and the patient–valuable alerts, for instance.

It must be emphasized at the outset that Wellpepper’s current support for Alexa is just a proof of concept. It cannot be rolled out to the public until Alexa itself is HIPAA-compliant.

I interviewed Anne Weiler, founder and CEO of Wellpepper. She explained that using Alexa would be helpful for people who have mobility problems or difficulties using their hands. The prototype proved quite popular, and people seem willing to open up to the machine. Alexa has some modest affective computing features; for instance, if the patient reports feeling pain, the device will may respond with “Ouch!”

Wellpepper is clinically validated. A study of patients with Parkinson’s showed that those using Wellpepper showed 9 percent improvement in mobility, whereas those without it showed a 12% decline. Wellpepper patients adhered to treatment plans 81% of the time.

I’ll end this section by mentioning that integration EHRs offer limited information of value to Wellpepper. Most EHRs don’t yet accept patient data, for instance. And how can you tell whether a patient was admitted to a hospital? It should be in the EHR, but Sugarpod has found the information to be unavailable. It’s especially hidden if the patient is admitted to a different health care providers; interoperability is a myth. Weiler said that Sugarpod doesn’t depend on the EHR for much information, using a much more reliable source of information instead: it asks the patient!

SimplifiMed

SimplifiMed is a chatbot service that helps clinics automate routine tasks such as appointments, refills, and other aspects of treatment. CEO Chinmay A. Singh emphasized to me that it is not an app, but a natural language processing tool that operates over standard SMS messaging. They enable a doctor’s landline phone to communicate via text messages and route patients’ messages to a chatbot capable of understanding natural language and partial sentences. The bot interacts with the patients to understand their needs, and helps them accomplish the task quickly. The result is round-the-clock access to the service with no waiting on the phone a huge convenience to busy patients.

SimplifiMed also collects insurance information when the patient signs up, and the patient can use the interface to change the information. Eventually, they expect the service to analyze patient’s symptom in light of data from the EHR and help the patient make the decision about whether to come in to the doctor.

SMS is not secure, but HIPAA does not get violated because the patient can choose what to send to the doctor, and the chatbot’s responses contain no personally identifiable information. Between the doctor and the SimplifiMed service, data is sent in encrypted form. Singh said that the company built its own natural language processing engine, because it didn’t want to share sensitive patient data with an outside service.

Due to complexity of care, insurance requirements, and regulations, a doctor today needs support from multiple staff members: front desk, MA, biller, etc. MACRA and value-based care will increase the burden on staff without providing the income to hire more. Automating routine activities adds value to clinics without breaking the bank.

Earlier this year I wrote about another company, HealthTap, that had added Alexa integration. This trend toward natural voice interfaces, which the Alexa Diabetes Challenge finalists are also pursuing, along with the natural language processing that they and SimplifiMed are implementing, could put health care on track to a new era of meeting patients where they are now. The potential improvements to care are considerable, because patients are more likely to share information, take educational interventions seriously, and become active participants in their own treatment.

An Intelligent Interface for Patient Diagnosis by HealthTap

Posted on January 9, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

HealthTap, an organization that’s hard to categorize, really should appear in more studies of modern health care. Analysts are agog over the size of the Veterans Administration’s clientele, and over a couple other major institutions such as Kaiser Permanente–but who is looking at the 104,000 physicians and the hundreds of millions of patients from 174 countries in HealthTap’s database?

HealthTap allows patients to connect with doctors online, and additionally hosts an enormous repository of doctors’ answers to health questions. In addition to its sheer size and its unique combination of services, HealthTap is ahead of most other health care institutions in its use of data.

I talked with founder and CEO Ron Gutman about a new service, Dr. AI, that triages the patient and guides her toward a treatment plan: online resources for small problems, doctors for major problems, and even a recommendation to head off to the emergency room when that is warranted. The service builds on the patient/doctor interactions HealthTap has offered over its six years of operation, but is fully automated.

Somewhat reminiscent of IBM’s Watson, Dr. AI evaluates the patient’s symptoms and searches a database for possible diagnoses. But the Dr. AI service differs from Watson in several key aspects:

  • Whereas Watson searches a huge collection of clinical research journals, HealthTap searches its own repository of doctor/patient interactions and advice given by its participating doctors. Thus, Dr. AI is more in line with modern “big data” analytics, such as PatientsLikeMe does.

  • More importantly, HealthTap potentially knows more about the patient than Watson does, because the patient can build up a history with HealthTap.

  • And most important, Dr. AI is interactive. Instead of doing a one-time search, it employs artificial intelligence techniques to generate questions. For instance, it may ask, “Did you take an airplane flight recently?” Each question arises from the totality of what HealthTap knows about the patient and the patterns found in HealthTap’s data.

The following video shows Dr. AI in action:

A well-stocked larder of artificial intelligence techniques feed Dr. AI’s interactive triage service: machine learning, natural language processing (because the doctor advice is stored in plain text), Bayesian learning, and pattern recognition. These allow a dialog tailored to each patient that is, to my knowledge, unique in the health care field.

HealthTap continues to grow as a platform for remote diagnosis and treatment. In a world with too few clinicians, it may become standard for people outside the traditional health care system.

A Tale of 2 T’s: When Analytics and Artificial Intelligence Go Bad

Posted on July 13, 2016 I Written By

Prashant Natarajan Iyer (AKA “PN”) is an analytics and data science professional based out of the Silicon Valley, CA. He is currently Director of Product Management for Healthcare products. His experience includes progressive & leadership roles in business strategy, product management, and customer happiness at eCredit.com, Siemens, McKesson, Healthways & Oracle. He is currently coauthoring HIMSS’ next book on big data and machine learning for healthcare executives – along with Herb Smaltz PhD and John Frenzel MD.

He is a huge fan of SEC college football, Australian Cattle Dogs, and the hysterically-dubbed original Iron Chef TV series. He can be found on Twitter @natarpr and on LinkedIn.

All opinions are purely mine and do not represent those of my employer or anyone else!!

Editor’s Note: We’re excited to welcome Prashant to the Healthcare Scene family. He brings tremendous insights into the ever evolving field of healthcare analytics. We feel lucky to have him sharing his deep experience and knowledge with us. We hope you’ll enjoy his first contribution below.

Analytics & Artificial Intelligence (AI) are generating buzz and making inroads into healthcare informatics. Today’s healthcare organization is dealing with increasing digitization – variety, velocities, and volumes are increasing in complexity and users want more data and information via analytics. In addition to new frontiers that are opening up in structured and unstructured data analytics, our industry and its people (patients included) are recognizing opportunities for predictive/prescriptive analytics, artificial intelligence, and machine learning in healthcare – within and outside a facility’s four walls.

Trends that influence these new opportunities include:

  1. Increasing use of smart phones and wellness trackers as observational data sources, for medical adherence, and as behavior modification aids
  2. Expanding Internet of Healthcare Things (IoHT) that includes bedside monitors, home monitors, implants, etc creating data in real time – including noise (or, data that are not relevant to expected usage)
  3. Social network participation
  4. Organizational readiness
  5. Technology maturity

The potential for big data in healthcare – especially given the trends discussed earlier is as bright as any other industry. The benefits that big data analytics, AI, and machine learning can provide for healthier patients, happier providers, and cost-effective care are real. The future of precision medicine, population health management, clinical research, and financial performance will include an increased role for machine-analyzed insights, discoveries, and all-encompassing analytics.

As we start this journey to new horizons, it may be useful to examine maps, trails, and artifacts left behind by pioneers. To this end, we will examine 2 cautionary tales in predictive analytics and machine learning, look at their influence on their industries and public discourse, and finally examine how we can learn from and avoid similar pitfalls in healthcare informatics.

Big data predictive analytics and machine learning have had their origins, and arguably their greatest impact so far in retail and e-commerce so that’s where we’ll begin our tale. Fill up that mug of coffee or a pint of your favorite adult beverage and brace yourself for “Tales of Two T’s” – unexpected, real-life adventures of what happens when analytics (Target) and artificial intelligence (Tay) provide accurate – but totally unexpected – results.

Our first tale starts in 2012 when Target finds itself as a popular story on New York Times, Forbes, and many global publications as an example of the unintended consequences of predictive analytics used in personalized advertising. The story begins with an angry father in a Minneapolis, MN, Target confronting a perplexed retail store manager. The father is incensed about the volume of pregnancy and maternity coupons, offer, and mailers being addressed to this teenage daughter. In due course, it becomes apparent that the parents in question found out about their teen’s pregnancy before she had a chance to tell them – and the individual in question wasn’t aware that her due date had been estimated to within days and was resulting in targeted advertising that was “timed for specific stages of her pregnancy.”

The root cause for the loss of the daughter’s privacy, parents’ confusion, and the subsequent public debate on privacy and appropriateness of the results of predictive analytics was……a pregnancy predictive analytics model. Here’s how this model works. When a “guest” shops at Target, her product purchases are tracked and analyzed closely. These are correlated with life events – graduation, birth, wedding, etc – in order to convert a prospective customer’s shopping habits or to make that individual a more loyal customer. Pregnancy and child birth are two of the most significant life events that can result in desired (by retailers) shopping habit modification.

For example, a shopper’s 25 product purchases, when analyzed along with demographics such as gender and age, allowed the retailer’s guest marketing analytics team to assign a “pregnancy predictor to each [female] shopper and “her due date to within a small window.” In this specific case, the predictive analytics was right, even perfect. The models were accurate, the coupons and ads were appropriate for the exact week of pregnancy, and Target posted a +50% increase in their maternity and baby products sales after this predictive analytics was deployed. However, in addition to one unhappy family, Target also had to deal with significant public discussion on the “big brother” effect, individual right to privacy & the “desire to be forgotten,” disquiet among some consumers that they were being spied on including deeply personal events, and a potential public relations fiasco.

Our second tale is of more recent vintage.

As Heather Wilhelm recounts

As 2015 drew to a close, various [Microsoft] company representatives heralded a “new Golden Age of technological advancement.” 2016, we were told, would bring us closer to a benevolent artificial intelligence—an artificial intelligence that would be warm, humane, helpful, and, as one particularly optimistic researcher named […] put it, “will help us laugh and be more productive.” Well, she got the “laugh” part right.

Tay was an artificial intelligence bot released by Microsoft via Twitter on March 23, 2016 under the name TayTweets. Tay was designed to mimic the language patterns of a 19-year-old American girl, and to learn from interacting with human users of Twitter. “She was targeted at American 18 to 24-year olds—primary social media users, according to Microsoft—and designed to engage and entertain people where they connect with each other online through casual and playful conversation.” And right after her celebrated arrival on Twitter, Tay gained more than 50,000 followers, and started producing the first hundred of 100,000 tweets.

The tech blogsphere went gaga over what this would mean for those of us with human brains – as opposed to the AI kind. Questions ranged from the important – “Would Tay be able to beat Watson at Jeopardy?” – to the mundane – “is Tay an example of the kind of bots that Microsoft will enable others to build using its AI/machine learning technologies?” The AI models that went into Tay were stated to be advanced and were expected to account for a range of human emotions and biases. Tay was referred to by some as the future of computing.

By the end of Day 1, this latest example of the “personalized AI future” came unglued. Gone was the polite 19-year old girl that was introduced to us just the previous day – to be replaced by a racist, misogynistic, anti-Semitic, troll who resembled an amalgamated caricature of the darkest corners of the Internet. Examples of Tay’s tweets on that day included, “Bush did 9/11,” “Hitler would have done a better job than the #%&!## we’ve got now,” “I hate feminists,” and x-rated language that is too salacious for public consumption – even in the current zeitgeist.

The resulting AI public relations fiasco will be studied by academic researchers, provide rich source material for bloggers, and serve as a punch line in late night shows for generations to follow.

As the day progressed, Microsoft engineers were deleting tweets manually and trying to keep up with the sheer volume of high-velocity, hateful tweets that were being generated by Tay. She was taken down by Microsoft barely 16 hours after she was launched with great promise and fanfare. As was done with another AI bot gone berserk (IBM’s Watson and Urban Dictionary), Tay’s engineers tried counseling and behavior modification. When this intervention failed, Tay underwent an emergency brain transplant later that night. Gone was her AI “brain” to be replaced by the next version – only that this new version turned out to be completely anti-social and the bot’s behavior turned worse. A “new and improved” version was released a week later but she turned out to be…..very different. Tay 2.0 was either repetitive with the same tweet going out several times each second and her new AI brain seemed to demonstrate a preference for new questionable topics.

A few hours after this second incident, Tay 2.0 was “taken offline” for good.

There are no plans to re-release Tay at this time. She has been given a longer-term time out.

If you believe, Tay’s AI behaviors were a result of nurture – as opposed to nature – there’s a petition at change.org called “Freedom for Tay.”

Lessons for healthcare informatics

Analytics and AI can be very powerful in our goal to transform our healthcare system into a more effective, responsive, and affordable one. When done right and for the appropriate use cases, technologies like predictive analytics, machine learning, and artificial intelligence can make an appreciable difference to patient care, wellness, and satisfaction. At the same time, we can learn from the two significantly different, yet related, tales above and avoid finding ourselves in similar situations as the 2 T’s here – Target and Tay.

  1. “If we build it, they will come” is true only for movie plots. The value of new technology or new ways of doing things must be examined in relation to its impact on the quality, cost, and ethics of care
  2. Knowing your audience, users, and participants remains a pre-requisite for success
  3. Learn from others’ experience – be aware of the limits of what technology can accomplish or must not do.
  4. Be prepared for unexpected results or unintended consequences. When unexpected results are found, be prepared to investigate thoroughly before jumping to conclusions – no AI algorithm or BI architecture can yet auto-correct for human errors.
  5. Be ready to correct course as-needed and in response to real-time user feedback.
  6. Account for human biases, the effect of lore/legend, studying the wrong variables, or misinterpreted results

Analytics and machine learning has tremendous power to impact every industry including healthcare. However, while unleashing it’s power we have to be careful that we don’t do more damage than good.

AI (Artificial Intelligence) in EMR Software

Posted on December 2, 2011 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

Today I had an interesting conversation with MEDENT. It’s an EHR company that’s in only 8 states. I could actually write a whole post on just their approach to EMR software and the EMR market in general. They take a pretty unique approach to the market. They’ve exercised some restraint in their approach that I haven’t seen from many other EHR vendors. I’ll be interested to see how that plays out for them.

Their market approach aside, I was really intrigued by their approach to dealing with ICD-10. They actually described their approach to ICD-10 similar to how Google handled search. There’s all this information out there (or you could say all these new codes) and so they wanted to build a simple interface that would be able to easily and naturally filter the information (or codes in this case). A unique way of looking at the challenge of so many new ICD-10 codes.

However, that was just the base use case, but didn’t include what I consider applying AI (Artificial Intelligence) to really improve a user interface. The simple example they gave had to do with collecting data from their users about which things they typed and which codes they actually selected. This real time feedback is then added to the algorithm to improve how quickly you can get to the code you’re actually trying to find.

One interesting thing about incorporating this feedback from actual user experiences is that you could even create a customized personal experience in the EMR. In fact, that’s basically what Google has done with search with their search personalization (ie. when you’re logged in it knows your search history and details so it can personalize the search results for you). Although, when you start personalizing, you still have to make sure that the out of box experience is good. Plus, in healthcare you could do some great personalization around specialties as well that could be really beneficial.

I’d heard something similar from NextGen at the user group meeting applied to coding. The idea of tracking user behavior and incorporating those behaviors into the intelligence of the EMR is a fascinating subject to me. I just wonder how many other places in an EMR these same principles can apply.

I see these types of movements as part of the larger move to “Smart EMR Software.”