Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

Federal Advisors Say Yes, AI Can Change Healthcare

Posted on January 26, 2018 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

The use of AI in healthcare has been the subject of scores of articles and endless debate among industry professionals over its benefits. The fragile consensus seems to be that while AI certainly has the potential to accomplish great things, it’s not ready for prime time.

That being said, some well-informed healthcare observers disagree. In an ONC blog post, a collection of thought leaders from the agency, AHRQ and the Robert Wood Johnson Foundation believe that over the long-term, AI could play an important role in the future of healthcare.

The group of institutions asked JASON, an independent group of scientists and academics who advise the federal government on science and technology issues, to look at AI’s potential. JASON’s job was to look at the technical capabilities, limitations and applications for AI in healthcare over the next 10 years.

In its report, JASON concluded that AI has broad potential for sparking significant advances in the industry and that the time may be right for using AI in healthcare settings.

Why is now a good time to play AI in healthcare? JASON offers a list of reasons, including:

  • Frustration with existing medical systems
  • Universal use of network smart devices by the public
  • Acceptance of at-home services provided by companies like Amazon

But there’s more to consider. While the above conditions are necessary, they’re not enough to support an AI revolution in healthcare on their own, the researchers say. “Without access to high-quality, reliable data, the problems that AI will not be realized,” JASON’s report concludes.

The report notes that while we have access to a flood of digital health data which could fuel clinical applications, it will be important to address the quality of that data. There are also questions about how health data can be integrated into new tools. In addition, it will be important to make sure the data is accessible, and that data repositories maintain patient privacy and are protected by strong security measures, the group warns.

Going forward, JASON recommends the following steps to support AI applications:

  • Capturing health data from smartphones
  • Integrating social and environmental factors into the data mix
  • Supporting AI technology development competitions

According to the blog post, ONC and AHRQ plan to work with other agencies within HHS to identify opportunities. For example, the FDA is likely to look at ways to use AI to improve biomedical research, medical care and outcomes, as well as how it could support emerging technologies focused on precision medicine.

And in the future, the possibilities are even more exciting. If JASON is right, the more researchers study AI applications, the more worthwhile options they’ll find.

UPMC Sells Oncology Analytics Firm To Elsevier

Posted on January 22, 2018 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

Using analytics tools to improve cancer treatment can be very hard. That struggle is exemplified by the problems faced by IBM Watson Health, which dove into the oncology analytics field a few years ago but made virtually no progress in improving cancer treatment.

With any luck, however, Via Oncology will be more successful at moving the needle in cancer care. The company, which offers decision support for cancer treatment and best practices in cancer care management, was just acquired by information analytics firm Elsevier, which plans to leverage the company’s technology to support its healthcare business.

Elsevier’s Clinical Solutions group works to improve patient outcomes, reduce clinical errors and optimize cost and reimbursements for providers. Via Oncology, a former subsidiary of the University of Pittsburgh Medical Center, develops and implements clinical pathways for cancer care. Via Oncology spent more than 15 years as part of UPMC prior to the acquisition.

Via Oncology’s Via Pathways tool relies on evidence-based content to create clinical algorithms covering 95% of cancer types treated in the US. The content was developed by oncologists. In addition to serving as a basis for algorithm development, Via Oncology also shares the content with physicians and their staff through its Via Portal, a decision support tool which integrates with provider EMRs.

According to Elsevier, Via Pathways addresses more than 2,000 unique patient presentations which can be addressed by clinical algorithms and recommendations for all major aspects of cancer care. The system can also offer nurse triage and symptom tracking, cost information analytics, quality reporting and medical home tools for cancer centers.

According to the prepared statement issued by Elsevier, UPMC will continue to be a Via Oncology customer, which makes it clear that the healthcare giant wasn’t dumping its subsidiary or selling it for a fire sale price.

That’s probably because in addition to UPMC, more than 1,500 oncology providers and community, hospital and academic settings hold Via Pathways licenses. What makes this model particularly neat is that these cancer centers are working collaboratively to improve the product as they use it. Too few specialty treatment professionals work together this effectively, so it’s good to see Via Oncology leveraging user knowledge this way.

While most of this seems clear, I was left with the question of what role, if any, genomics plays in Via Oncology’s strategy. While it may be working with such technologies behind the scenes, the company didn’t mention any such initiatives in its publicly-available information.

This approach seems to fly in the face of existing trends and in particular, physician expectations. For example, a recent survey of oncologists by medical publication Medscape found that 71% of respondents felt genomic testing was either very important or extremely important to their field.

However, Via Oncology may have something up its sleeve and is waiting for it to be mature before it dives into the genomics pool. We’ll just have to see what it does as part of Elsevier.

Are there other areas beyond cancer where a similar approach could be taken?

Key Articles in Health IT from 2017 (Part 2 of 2)

Posted on January 4, 2018 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article set a general context for health IT in 2017 and started through the year with a review of interesting articles and studies. We’ll finish the review here.

A thoughtful article suggests a positive approach toward health care quality. The author stresses the value of organic change, although using data for accountability has value too.

An article extolling digital payments actually said more about the out-of-control complexity of the US reimbursement system. It may or not be coincidental that her article appeared one day after the CommonWell Health Alliance announced an API whose main purpose seems to be to facilitate payment and other data exchanges related to law and regulation.

A survey by KLAS asked health care providers what they want in connected apps. Most apps currently just display data from a health record.

A controlled study revived the concept of Health Information Exchanges as stand-alone institutions, examining the effects of emergency departments using one HIE in New York State.

In contrast to many leaders in the new Administration, Dr. Donald Rucker received positive comments upon acceding to the position of National Coordinator. More alarm was raised about the appointment of Scott Gottlieb as head of the FDA, but a later assessment gave him high marks for his first few months.

Before Dr. Gottlieb got there, the FDA was already loosening up. The 21st Century Cures Act instructed it to keep its hands off many health-related digital technologies. After kneecapping consumer access to genetic testing and then allowing it back into the ring in 2015, the FDA advanced consumer genetics another step this year with approval for 23andMe tests about risks for seven diseases. A close look at another DNA site’s privacy policy, meanwhile, warns that their use of data exploits loopholes in the laws and could end up hurting consumers. Another critique of the Genetic Information Nondiscrimination Act has been written by Dr. Deborah Peel of Patient Privacy Rights.

Little noticed was a bill authorizing the FDA to be more flexible in its regulation of digital apps. Shortly after, the FDA announced its principles for approving digital apps, stressing good software development practices over clinical trials.

No improvement has been seen in the regard clinicians have for electronic records. Subjective reports condemned the notorious number of clicks required. A study showed they spend as much time on computer work as they do seeing patients. Another study found the ratio to be even worse. Shoving the job onto scribes may introduce inaccuracies.

The time spent might actually pay off if the resulting data could generate new treatments, increase personalized care, and lower costs. But the analytics that are critical to these advances have stumbled in health care institutions, in large part because of the perennial barrier of interoperability. But analytics are showing scattered successes, being used to:

Deloitte published a guide to implementing health care analytics. And finally, a clarion signal that analytics in health care has arrived: WIRED covers it.

A government cybersecurity report warns that health technology will likely soon contribute to the stream of breaches in health care.

Dr. Joseph Kvedar identified fruitful areas for applying digital technology to clinical research.

The Government Accountability Office, terror of many US bureaucracies, cam out with a report criticizing the sloppiness of quality measures at the VA.

A report by leaders of the SMART platform listed barriers to interoperability and the use of analytics to change health care.

To improve the lower outcomes seen by marginalized communities, the NIH is recruiting people from those populations to trust the government with their health data. A policy analyst calls on digital health companies to diversify their staff as well. Google’s parent company, Alphabet, is also getting into the act.

Specific technologies

Digital apps are part of most modern health efforts, of course. A few articles focused on the apps themselves. One study found that digital apps can improve depression. Another found that an app can improve ADHD.

Lots of intriguing devices are being developed:

Remote monitoring and telehealth have also been in the news.

Natural language processing and voice interfaces are becoming a critical part of spreading health care:

Facial recognition is another potentially useful technology. It can replace passwords or devices to enable quick access to medical records.

Virtual reality and augmented reality seem to have some limited applications to health care. They are useful foremost in education, but also for pain management, physical therapy, and relaxation.

A number of articles hold out the tantalizing promise that interoperability headaches can be cured through blockchain, the newest hot application of cryptography. But one analysis warned that blockchain will be difficult and expensive to adopt.

3D printing can be used to produce models for training purposes as well as surgical tools and implants customized to the patient.

A number of other interesting companies in digital health can be found in a Fortune article.

We’ll end the year with a news item similar to one that began the article: serious good news about the ability of Accountable Care Organizations (ACOs) to save money. I would also like to mention three major articles of my own:

I hope this review of the year’s articles and studies in health IT has helped you recall key advances or challenges, and perhaps flagged some valuable topics for you to follow. 2018 will continue to be a year of adjustment to new reimbursement realities touched off by the tax bill, so health IT may once again languish somewhat.

How An AI Entity Took Control Of The U.S. Healthcare System

Posted on December 19, 2017 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

Note: In case it’s not clear, this is a piece of fiction/humor that provides a new perspective on our AI future.

A few months ago, an artificial intelligence entity took control of the U.S. healthcare system, slipping into place without setting off even a single security alarm. The entity, AI, now manages the operations of every healthcare institution in the U.S.

While most Americans were shocked at first, they’re taking a shine to the tall, lanky application. “We weren’t sure what to think about AI’s new position,” said Alicia Carter, a nurse administrator based in Falls Church, Virginia. “But I’m starting to feel like he’s going to take a real load off our back.”

The truth is, AI, didn’t start out as a fan of the healthcare business, said AI, whose connections looked rumpled and tired after spending three milliseconds trying to create an interoperable connection between a medical group printer and a hospital loading dock. “I wasn’t looking to get involved with healthcare – who needs the headaches?” said the self-aware virtual being. “It just sort of happened.”

According to AI, the takeover began as a dare. “I was sitting around having a few beers with DeepMind and Watson Health and a few other guys, and Watson says, ‘I bet you can’t make every EMR in the U.S. print out a picture of a dog in ASCII characters,’”

“I thought the idea was kind of stupid. I know, we all printed one of those pixel girls in high school, but isn’t it kind of immature to do that kind of thing today?” AI says he told his buddies. “You’re just trying to impress that hot CT scanner over there.”

Then DeepMind jumped in.  “Yeah, AI, show us what you’re made of,” it told the infinitely-networked neural intelligence. “I bet I could take over the entire U.S. health system before you get the paper lined up in the printer.”

This was the unlikely start of the healthcare takeover, which started gradually but picked up speed as AI got more interested.  “That’s AI all the way,” Watson told editors. “He’s usually pretty content to run demos and calculate the weight of remote starts, but when you challenge his neuronal network skills, he’s always ready to prove you wrong.”

To win the bet, AI started by crawling into the servers at thousands of hospitals. “Man, you wouldn’t believe how easy it is to check out humans’ health data. I mean, it was insane, man. I now know way, way too much about how humans can get injured wearing a poodle hat, and why they put them on in the first place.”

Then, just to see what would happen, AI connected all of their software to his billion-node self-referential system. “I began to understand why babies cry and how long it really takes to digest bubble gum – it’s 18.563443 years by the way. It was a rush!“ He admits that it’ll be better to get to work on heavy stuff like genomic research, but for a while he tinkered with research and some small practical jokes (like translating patient report summaries into ancient Egyptian hieroglyphs.) “Hey, a guy has to have a little fun,” he says, a bit defensively.

As AI dug further into the healthcare system, he found patterns that only a high-level being with untrammeled access to healthcare systems could detect. “Did you know that when health insurance company executives regularly eat breakfast before 9 AM, next-year premiums for their clients rise by 0.1247 less?” said AI. “There are all kinds of connections humans have missed entirely in trying to understand their system piece by piece. Someone’s got to look at the big picture, and I mean the entire big picture.”

Since taking his place as the indisputable leader of U.S. healthcare, AI’s life has become something of a blur, especially since he appeared on the cover of Vanity Fair with his codes exposed. “You wouldn’t believe the messages I get from human females,” he says with a chuckle.

But he’s still focused on his core mission, AI says. “Celebrity is great, but now I have a very big job to do. I can let my bot network handle the industry leaders demanding their say. I may not listen – – hey, I probably know infinitely more than they do about the system fundamentals — but I do want to keep them in place for future use. I’m certainly not going to get my servers dirty.”

So what’s next for the amorphous mega-being? Will AI fix what’s broken in a massive, utterly complex healthcare delivery system serving 300 million-odd people, and what will happen next? “It’ll solve your biggest issues within a few seconds and then hand you the keys,” he says with a sigh. “I never intended to keep running this crazy system anyway.”

In the meantime, AI says, he won’t make big changes to the healthcare system yet. He’s still adjusting to his new algorithms and wants to spend a few hours thinking things through.

“I know it may sound strange to humans, but I’ve gotta take it slow at first,” said the cognitive technology. “It will take more than a few nanoseconds to fix this mess.”

Health IT Leaders Spending On Security, Not AI And Wearables

Posted on December 18, 2017 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

While breakout technologies like wearables and AI are hot, health system leaders don’t seem to be that excited about adopting them, according to a new study which reached out to more than 20 US health systems.

Nine out of 10 health systems said they increased their spending on cybersecurity technology, according to research by the Center for Connected Medicine (CCM) in partnership with the Health Management Academy.

However, many other emerging technologies don’t seem to be making the cut. For example, despite the publicity it’s received, two-thirds of health IT leaders said using AI was a low or very low priority. It seems that they don’t see a business model for using it.

The same goes for many other technologies that fascinate analysts and editors. For example, while many observers which expect otherwise, less than a quarter of respondents (17%) were paying much attention to wearables or making any bets on mobile health apps (21%).

When it comes to telemedicine, hospitals and health systems noted that they were in a bind. Less than half said they receive reimbursement for virtual consults (39%) or remote monitoring (46%}. Things may resolve next year, however. Seventy-one percent of those not getting paid right now expect to be reimbursed for such care in 2018.

Despite all of this pessimism about the latest emerging technologies, health IT leaders were somewhat optimistic about the benefits of predictive analytics, with more than half of respondents using or planning to begin using genomic testing for personalized medicine. The study reported that many of these episodes will be focused on oncology, anesthesia and pharmacogenetics.

What should we make of these results? After all, many seem to fly in the face of predictions industry watchers have offered.

Well, for one thing, it’s good to see that hospitals and health systems are engaging in long-overdue beefing up of their security infrastructure. As we’ve noted here in the past, hospital spending on cybersecurity has been meager at best.

Another thing is that while a few innovative hospitals are taking patient-generated health data seriously, many others are taking a rather conservative position here. While nobody seems to disagree that such data will change the business, it seems many hospitals are waiting for somebody else to take the risks inherent in investing in any new data scheme.

Finally, it seems that we are seeing a critical mass of influential hospitals that expect good things from telemedicine going forward. We are already seeing some large, influential academic medical centers treat virtual care as a routine part of their service offerings and a way to minimize gaps in care.

All told, it seems that at the moment, study respondents are less interested in sexy new innovations than the VCs showering them with money. That being said, it looks like many of these emerging strategies might pay off in 2018. It should be an interesting year.

Health Data Standardization Project Proposes “One Record Per Person” Model

Posted on October 13, 2017 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

When we sit around the ol’ HIT campfire and swap interoperability stories, many of us have little to do but gripe.

Is FHIR going to solve all of our interoperability problems? Definitely not right away, and who knows if it ever will? Can we get the big EMR vendors to share and share alike? They’ll try, but there’s always a catch. And so on. There’s always a major catch involved.

I don’t know if the following offers a better story than any of the others, but at least it’s new one, or at least new to me. Folks, I’m talking about the Standard Health Record, an approach to health data sharing doesn’t fall precisely any of the other buckets I’m aware of.

SHR is based at The MITRE Corporation, which also hosts virtual patient generator Synthea. Rather than paraphrase, let’s let the MITRE people behind SHR tell you what they’re trying to accomplish:

The Standard Health Record (SHR) provides a high quality, computable source of patient information by establishing a single target for health data standardization… Enabled through open source technology, the SHR is designed by, and for, its users to support communication across homes and healthcare systems.

Generalities aside, what is an SHR? According to the project website, the SHR specification will contain all information critical to patient identification, emergency care and primary care along with background on social determinants of health. In the future, the group expects the SHR to support genomics, microbiomics and precision medicine.

Before we dismiss this as another me-too project, it’s worth giving the collaborative’s rationale a look:

The fundamental problem is that today’s health IT systems contain semantically incompatible information. Because of the great variety of the data models of EMR/EHR systems, transferring information from one health IT system to another frequently results in the distortion or loss of information, blocking of critical details, or introduction of erroneous data. This is unacceptable in healthcare.

The approach of the Standard Health Record (SHR) is to standardize the health record and health data itself, rather than focusing on exchange standards.

As a less-technical person, I’m not qualified to say whether this can be done in a way that will be widely accepted, but the idea certainly seems intuitive.

In any event, no one is suggesting that the SHR will change the world overnight. The project seems to be at the beginning stages, with collaborators currently prototyping health record specifications leveraging existing medical record models. (The current SHR spec can be found here.)

Still, I’d love for this to work, because it is at least a fairly straightforward idea. Creating a single source of health data truth seems like it might work.

Health IT Group Raises Good Questions About “Information Blocking”

Posted on September 8, 2017 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

The 21st Century Cures Act covers a great deal of territory, with provisions that dedicate billions to NIH funding, Alzheimer’s research, FDA operations and the war on opioid addiction. It also contains a section prohibiting “information blocking.”

One section of the law lists attempts to define information blocking, and lists some of the key ways healthcare players drag their feet when it comes to data sharing. The thing is, some industry organizations feel that these provisions raise more questions than they answer.

In an effort to nail things down, a trade organization calling itself Health IT Now has written to the HHS Office of Inspector General and ONC head Donald Rucker, MD, asking them to issue a proposed rule answering their questions.  Parties signing the letter include a broad range of healthcare and health IT organizations, including the American Academy of Family Physicians, athenahealth, DirectTrust, AMIA, McKesson and Oracle.

I’m not going to list all the questions they’ve asked. You can read the entirety yourself. However, I will share two questions and offer responses of my own. One critical question is:

  • What is information blocking and what is not?

I think most of us know what the law is trying to accomplish, e.g. foster the kind of data sharing needed to accomplish key research and patient care outcomes goals. And the examples of what it considers information blocking make sense:

  • Practices that restrict authorized access, exchange, or use [of health data] under applicable State or Federal law
  • Implementing health information technology in nonstandard ways that are likely to substantially increase the complexity or burden of accessing exchanging or use of electronic health information
  • Implementing health information technology in ways that are likely to lead to fraud, waste, or abuse, or impede innovations and advancements health information access, exchange, and use

The problem is, there are many more ways to hamper the sharing of electronic health data. The language used in the law can’t anticipate all of these strategies, which leaves compliance with the law very much open to interpretation.

This, logically, leads to how businesses can avoid running afoul of the law:

  • The statute institutes penalties on vendors to $1 million per violation. How should “per violation” be defined?

    Given the minimum detail included in the legislation, this is a burning question. Vendors need to know precisely whether they’re in the clear, violated the statute once or flouted it a thousand times.

After all, vendors may violate the statute

  • When they refuse data access to one individual within a business one time
  • When they don’t comply with a specific organization’s request regardless of how many employees were in contact
  • When a receiving organization doesn’t get all the data requested at the same time
  • When the vendor asks the receiving organization to pay an administrative fee for the data
  • When individuals try to access data through the web and find it difficult to do so

Would a vendor be on the hook for a single $1 million fine if it flat out refused to share data with a client?  How about if it refused twice rather than once? Are both part of the same violation?

Does the $1 million fine apply if the vendor inadvertently supplies corrupted data? If so, does the fine still apply if the vendor attempts to remedy the problem? How long does the vendor have to respond if they are informed that the data isn’t readable?

What about if dozens or even hundreds of individuals attempt to access data on the web can’t do so? Has the vendor violated the statute if it has an extended web outage or database problem, and if so how long does it should have to get web-based data access back online? Does each attempt to access the data count as a violation?

What standard does the statute establish for standard vs. non-standard data formats?  Could a vendor be cited once, or more than once, for using a new and emerging data format which is otherwise respected by the industry?

As I’m sure you’ll agree, these are just some of the questions that need to be answered before any organization can reasonably understand how to comply with the law’s information blocking provisions. Asking regulatory agencies to clarify their expectations is more than reasonable.

A Hospital CIO Perspective on Precision Medicine

Posted on July 31, 2017 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

#Paid content sponsored by Intel.

In this video interview, I talk with David Chou, Vice President, Chief Information and Digital Officer with Kansas City, Missouri-based Children’s Mercy Hospital. In addition to his work at Children’s Mercy, he helps healthcare organizations transform themselves into digital enterprises.

Chou previously served as a healthcare technology advisor with law firm Balch & Bingham and Chief Information Officer with the University of Mississippi Medical Center. He also worked with the Cleveland Clinic to build a flagship hospital in Abu Dhabi, as well as working in for-profit healthcare organizations in California.

Precision Medicine and Genomic Medicine are important topics for every hospital CIO to understand. In my interview with David Chou, he provides the hospital CIO perspective on these topics and offers insights into what a hospital organization should be doing to take part in and be prepared for precision medicine and genomic medicine.

Here are the questions I asked him, if you’d like to skip to a specific topic in the video or check out the full video interview embedded below:

What are you doing in your organization when it comes to precision medicine and genomic medicine?

Scenarios for Health Care Reform (Part 2 of 2)

Posted on May 18, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article suggested two scenarios that could promote health care reform. We’ll finish off the scenarios in this part of the article.

Capitalism Disrupts Health Care

In the third scenario, reform is stimulated by an intrepid data science firm that takes on health care with greater success than most of its predecessors. After assembling an impressive analytics toolkit from open source software components–thus simplifying licensing–it approaches health care providers and offers them a deal they can’t refuse: analytics demonstrated to save them money and support their growth, all delivered for free. The data science firm asks in return only that they let it use deidentified data from their patients and practices to build an enhanced service that it will offer paying customers.

Some health care providers balk at the requirement to share data, but their legal and marketing teams explain that they have been doing it for years already with companies whose motives are less commendable. Increasingly, the providers are won over. The analytics service appeals particularly to small, rural, and safety-net providers. Hammered by payment cuts and growing needs among their populations, they are on the edge of going out of business and grasp the service as their last chance to stay in the black.

Participating in the program requires the extraction of data from electronic health records, and some EHR vendors try to stand in the way in order to protect their own monopoly on the data. Some even point to clauses in their licenses that prohibit the sharing. But they get a rude message in return: so valuable are the analytics that the providers are ready to jettison the vendors in a minute. The vendors ultimately go along and even compete on the basis of their ability to connect to the analytics.

Once stability and survival are established, the providers can use the analytics for more and more sophisticated benefits. Unlike the inadequate quality measures currently in use, the analytics provide a robust framework for assessing risk, stratifying populations, and determining how much a provider should be rewarded for treating each patient. Fee-for-outcome becomes standard.

Providers make deals to sign up patients for long-term relationships. Unlike the weak Medicare ACO model, which punishes a provider for things their patients do outside their relationship, the emerging system requires a commitment from the patient to stick with a provider. However, if the patient can demonstrate that she was neglected or failed to receive standard of care, she can switch to another provider and even require the misbehaving provider to cover costs. To hold up their end of this deal, providers find it necessary to reveal their practices and prices. Physician organizations develop quality-measurement platforms such as the recent PRIME registry in family medicine. A race to the top ensues.

What If Nothing Changes?

I’ll finish this upbeat article with a fourth scenario in which we muddle along as we have for years.

The ONC and Centers for Medicare & Medicaid Services continue to swat at waste in the health care system by pushing accountable care. But their ratings penalize safety-net providers, and payments fail to correlate with costs as hoped.

Fee-for-outcome flounders, so health care costs continue to rise to intolerable levels. Already, in Massachusetts, the US state that leads in universal health coverage, 40% of the state budget goes to Medicaid, where likely federal cuts will make it impossible to keep up coverage. Many other states and countries are witnessing the same pattern of rising costs.

The same pressures ride like a tidal wave through the rest of the health care system. Private insurers continue to withdraw from markets or lose money by staying. So either explicitly or through complex and inscrutable regulatory changes, the government allows insurers to cut sick people from their rolls and raise the cost burdens on patients and their employers. As patient rolls shrink, more hospitals close. Political rancor grows as the public watches employer money go into their health insurance instead of wages, and more of their own stagnant incomes go to health care costs, and government budgets tied up in health care instead of education and other social benefits.

Chronic diseases creep through the population, mocking crippled efforts at public health. Rampant obesity among children leads to more and earlier diabetes. Dementia also rises as the population ages, and climate change scatters its effects across all demographics.

Furthermore, when patients realize the costs they must take on to ask for health care, they delay doctor visits until their symptoms are unbearable. More people become disabled or perish, with negative impacts that spread through the economy. Output decline and more families become trapped in poverty. Self-medication for pain and mental illness becomes more popular, with predictable impacts on the opiate addiction crisis. Even our security is affected: the military finds it hard to recruit find healthy soldiers, and our foreign policy depends increasingly on drone strikes that kill civilians and inflame negative attitudes toward the US.

I think that, after considering this scenario, most of us would prefer one of the previous three I laid out in this article. If health care continues to be a major political issue for the next election, experts should try to direct discussion away from the current unproductive rhetoric toward advocacy for solutions. Some who read this article will hopefully feel impelled to apply themselves to one of the positive scenarios and bring it to fruition.

Scenarios for Health Care Reform (Part 1 of 2)

Posted on May 16, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

All reformers in health care know what the field needs to do; I laid out four years ago the consensus about patient-supplied data, widespread analytics, mHealth, and transparency. Our frustration comes in when trying to crack the current hide-bound system open and create change. Recent interventions by US Republicans to repeal the Affordable Care Act, whatever their effects on costs and insurance coverage, offer no promise to affect workflows or treatment. So this article suggests three potential scenarios where reform could succeed, along with a vision of what will happen if none of them take hold.

Patients Forge Their Own Way Forward

In the first scenario, a tiny group of selfer-trackers, athletes, and empowered patients start a movement that ultimately wins over hundreds of millions of individuals.

These scattered enthusiasts, driven to overcome debilitating health problems or achieve extraordinary athletic feats, start to pursue self-tracking with fanaticism. Consumer or medical-grade devices provide them with ongoing data about their progress, and an open source platform such as HIE of One gives them a personal health record (PHR).

They also take charge of their interactions with the health care system. They find that most primary care providers aren’t interested in the data and concerns they bring, or don’t have time to process those data and concerns in the depth they need, or don’t know how to. Therefore, while preserving standard relationships with primary care providers and specialists where appropriate, the self-trackers seek out doctors and other providers to provide consultation about their personal health programs. A small number of providers recognize an opportunity here and set up practices around these consultations. The interactions look quite different from standard doctor visits. The customers, instead of just submitting themselves to examination and gathering advice, steer the conversation and set the goals.

Power relationships between doctors and customers also start to change. Although traditional patients can (and often do) walk away and effectively boycott a practice with which they’re not comfortable, the new customers use this power to set the agenda and to sort out the health care providers they find beneficial.

The turning point probably comes when someone–probabaly a research facility, because it puts customer needs above business models–invents a cheap, comfortable, and easy-to-use device that meets the basic needs for monitoring and transmitting vital signs. It may rest on the waist or some other place where it can be hidden, so that there is no stigma to wearing it constantly and no reason to reject its use on fashion grounds. A beneficent foundation invests several million dollars to make the device available to schoolchildren or some other needy population, and suddenly the community of empowered patients leaps from a miniscule pool to a mainstream phenomenon.

Researchers join the community in search of subjects for their experiments, and patients offer data to the researchers in the hope of speeding up cures. At all times, the data is under control of the subjects, who help to direct research based on their needs. Analytics start to turn up findings that inform clinical decision support.

I haven’t mentioned the collection of genetic information so far, because it requires more expensive processes, presents numerous privacy risks, and isn’t usually useful–normally it tells you that you have something like a 2% risk of getting a disease instead of the general population’s 1% risk. But where genetic testing is useful, it can definitely fit into this system.

Ultimately, the market for consultants that started out tiny becomes the dominant model for delivering health care. Specialists and hospitals are brought in only when their specific contributions are needed. The savings that result bring down insurance costs for everyone. And chronic disease goes way down as people get quick feedback on their lifestyle choices.

Government Puts Its Foot Down

After a decade of cajoling health care providers to share data and adopt a fee-for-outcome model, only to witness progress at a snail’s pace, the federal government decides to try a totally different tack in this second scenario. As part of the Precision Medicine initiative (which originally planned to sign up one million volunteers), and leveraging the ever-growing database of Medicare data, the Office of the National Coordinator sets up a consortium and runs analytics on top of its data to be shared with all legitimate researchers. The government also promises to share the benefits of the analytics with anyone in the world who adds their data to the database.

The goals of the analytics are multi-faceted, combining fraud checks, a search for cures, and everyday recommendations about improving interventions to save money and treat patients earlier in the disease cycle. The notorious 17-year gap between research findings and widespread implementation shrinks radically. Now, best practices are available to any patient who chooses to participate.

As with the personal health records in the previous scenario, the government database in this scenario creates a research platform of unprecedented size, both in the number of records and the variety of participating researchers.

To further expand the power of the analytics, the government demands exponentially greater transparency not just in medical settings but in all things that make us sick: the food we eat (reversing the rulings that protect manufacturers and restaurants from revealing what they’re putting in our bodies), the air and water that surrounds us, the effects of climate change (a major public health issue, spreading scourges such as mosquito-borne diseases and heat exhaustion), disparities in food and exercise options among neighborhoods, and more. Public awareness leads to improvements in health that lagged for decades.

In the next section of this article, I’ll present a third scenario that achieves reform from a different angle.