Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

An Interesting Overview Of Alphabet’s Healthcare Investments

Posted on June 27, 2018 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

Recently I’ve begun reading a blog called The Medical Futurist which offers some very interesting fare. In addition to some intriguing speculation, it includes some research that I haven’t seen anywhere else. (It is written by a physician named Bertalan Mesko.)

In this case, Mesko has buried a shrewd and well-researched piece on Alphabet’s healthcare investments in an otherwise rambling article. (The rambling part is actually pretty interesting on its own, by the way.)

The piece offers a rather comprehensive update on Alphabet’s investments in and partnerships with healthcare-related companies, suggesting that no other contender in Silicon Valley is investing in this sector heavily as Alphabet’s GV (formerly Google Ventures). I don’t know if he’s right about this, but it’s probably true.

By Mesko’s count, GV has backed almost 60 health-related enterprises since the fund was first kicked off in 2009. These investments include direct-to-consumer genetic testing firm 23andme, health insurance company Oscar Health, telemedicine venture Doctor on Demand and Flatiron Health, which is building an oncology-focused data platform.

Mesko also points out that GV has had an admirable track record so far, with five of the companies it first backed going public in the last year. I’m not sure I agree that going public is per se a sign of success — a lot depends on how the IPO is received by Wall Street– but I see his logic.

In addition, he notes that Alphabet is stocking up on intellectual resources. The article cites research by Ernest & Young reporting that Alphabet filed 186 healthcare-related patents between 2013 and 2017.

Most of these patents are related to DeepMind, which Google acquired in 2014, and Verily Life Sciences (formerly Google Life Sciences). While these deals are interesting in and of themselves, on a broader level the patents demonstrate Alphabet’s interest in treating chronic illnesses like diabetes and the use of bioelectronics, he says.

Meanwhile, Verily continues to work on a genetic data-collecting initiative known as the Baseline Study. It plans to leverage this data, using some of the same algorithms behind Google’s search technology, to pinpoint what makes people healthy.

It’s a grand and somewhat intimidating picture.

Obviously, there’s a lot more to discuss here, and even Mesko’s in-depth piece barely scratches the surface of what can come out of Alphabet and Google’s health investments. Regardless, it’s worth keeping track of their activity in the sector even if you find it overwhelming. You may be working for one of those companies someday.

A Whole New Way of Being Old: Book Review of The New Mobile Age

Posted on March 15, 2018 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The recently released overview of health care for the aging by Dr. Joseph Kvedar and his collaborators, The New Mobile Age: How Technology Will Extend the Healthspan and Optimize the Lifespan, is aimed at a wide audience of people who can potentially benefit: health care professionals and those who manage their clinics and hospitals, technologists interested in succeeding in this field, and policy makers. Your reaction to this book may depend on how well you have asserted the impact of your prefrontal cortex over your amygdala before reading the text–if your mood is calm you can see numerous possibilities and bright spots, whereas if you’re agitated you will latch onto the hefty barriers in the way.

Kvedar highlights, as foremost among the culture changes needed to handle aging well, is a view of aging as a positive and productive stage of life. Second to that comes design challenges: technologists must make devices and computer interfaces that handle affect, adapt smoothly to different individuals and their attitudes, and ultimately know both when to intervene and how to present healthy options. As an example, Chapter 8 presents two types of robots, one of which was accepted more by patients when it was “serious” and the other when it was “playful.” The nuances of interface design are bewildering.

The logical argument in The New Mobile Age proceeds somewhat like this:

  1. Wholesome and satisfying aging is possible, but particularly where chronic conditions are involved, it involves maintaining a healthful and balanced lifestyle, not just fixing disease.

  2. Support for health, particularly in old age, thus involves public health and socio-economic issues such as food, exercise, and especially social contacts.

  3. Each person requires tailored interventions, because his or her needs and desires are unique.

  4. Connected technology can help, but must adapt to the conditions and needs of the individual.

The challenges of health care technology emerged in my mind, during the reading of this book, as a whole new stage of design. Suppose we broadly and crudely characterize the first 35 years of computer design as number-crunching, and the next 35 years–after the spread of the personal computer–as one of augmenting human intellect (a phrase popularized by pioneer Douglas Engelbart).

We have recently entered a new era where computers use artificial intelligence for decision-making and predictions, going beyond what humans can anticipate or understand. (For instance, when I pulled up The New Mobile Age on Amazon.com, why did it suggest I check out a book about business and technology that I have already read, Machine, Platform, Crowd? There is probably no human at Amazon.com or elsewhere who could explain the algorithm that made the connection.)

So I am suggesting that an equally momentous shift will be required to fulfill Kvedar’s mandate. In addition to the previous tasks of number-crunching, augmenting human intellect, and predictive analytics, computers will need to integrate with human life in incredibly supple, subtle ways.

The task reminds me of self-driving cars, which business and tech observers assure us will replace human drivers in a foreseeable time span. As I write this paragraph, snow from a nor’easter is furiously swirling through the air. It is hard to imagine that any intelligence, whether human, AI, or alien, can safely navigate a car in that mess. Self-driving cars won’t catch on until computers can instantly handle real-world conditions perfectly–and that applies to technology for the aging too.

This challenge applies to physical services as well as emotional ones. For instance, Kvedar suggests in Chapter 8 that a robot could lift a person from a bed to a wheelchair. That’s obviously riskier and more nuanced than carting goods around a warehouse. And that robot is supposed to provide encouragement, bolster the spirits of the patient, and guide the patient toward healthful behavior as well.

Although I have no illusions about the difficulty of the tasks set before computers in health care, I believe the technologies offer enormous potential and cheer on the examples provided by Kvedar in his book. It’s important to note that the authors, while delineating the different aspects of conveying care to the aging, always start with a problem and a context, taking the interests of the individual into account, and then move to the technical parts of the solution.

Therefore, Kvedar brings us face to face with issues we cannot shut our eyes to, such as the widening gap between the increasing number of elderly people in the world and the decreasing number of young people who can care for them or pay for such care. A number of other themes appear that will be familiar to people following the health care field: the dominance of lifestyle-related chronic conditions among our diseases, the clunkiness and unfriendliness of most health-related systems (most notoriously the electronic health record systems used by doctors), the importance of understanding the impact of behavior and phenotypical data on health, but also the promise of genetic sequencing, and the importance of respecting the dignity and privacy of the people whose behavior we want to change.

And that last point applies to many aspects of accommodating diverse populations. Although this book is about the elderly, it’s not only they who are easily infantilized, dismissed, ignored, or treated inappropriately in the health care system: the same goes for the mentally ill, the disabled, LGBTQ people, youth, and many other types of patients.

The New Mobile Age highlights exemplary efforts by companies and agencies to use technology to meet the human needs of the aging. Kvedar’s own funder, Partners Healthcare, can afford to push innovation in this area because it is the dominant health care provider in the Boston area (where I live) and is flush with cash. When will every institution do these same things? The New Mobile Age helps to explain what we need in order to get to that point.

Federal Advisors Say Yes, AI Can Change Healthcare

Posted on January 26, 2018 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

The use of AI in healthcare has been the subject of scores of articles and endless debate among industry professionals over its benefits. The fragile consensus seems to be that while AI certainly has the potential to accomplish great things, it’s not ready for prime time.

That being said, some well-informed healthcare observers disagree. In an ONC blog post, a collection of thought leaders from the agency, AHRQ and the Robert Wood Johnson Foundation believe that over the long-term, AI could play an important role in the future of healthcare.

The group of institutions asked JASON, an independent group of scientists and academics who advise the federal government on science and technology issues, to look at AI’s potential. JASON’s job was to look at the technical capabilities, limitations and applications for AI in healthcare over the next 10 years.

In its report, JASON concluded that AI has broad potential for sparking significant advances in the industry and that the time may be right for using AI in healthcare settings.

Why is now a good time to play AI in healthcare? JASON offers a list of reasons, including:

  • Frustration with existing medical systems
  • Universal use of network smart devices by the public
  • Acceptance of at-home services provided by companies like Amazon

But there’s more to consider. While the above conditions are necessary, they’re not enough to support an AI revolution in healthcare on their own, the researchers say. “Without access to high-quality, reliable data, the problems that AI will not be realized,” JASON’s report concludes.

The report notes that while we have access to a flood of digital health data which could fuel clinical applications, it will be important to address the quality of that data. There are also questions about how health data can be integrated into new tools. In addition, it will be important to make sure the data is accessible, and that data repositories maintain patient privacy and are protected by strong security measures, the group warns.

Going forward, JASON recommends the following steps to support AI applications:

  • Capturing health data from smartphones
  • Integrating social and environmental factors into the data mix
  • Supporting AI technology development competitions

According to the blog post, ONC and AHRQ plan to work with other agencies within HHS to identify opportunities. For example, the FDA is likely to look at ways to use AI to improve biomedical research, medical care and outcomes, as well as how it could support emerging technologies focused on precision medicine.

And in the future, the possibilities are even more exciting. If JASON is right, the more researchers study AI applications, the more worthwhile options they’ll find.

UPMC Sells Oncology Analytics Firm To Elsevier

Posted on January 22, 2018 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.

Using analytics tools to improve cancer treatment can be very hard. That struggle is exemplified by the problems faced by IBM Watson Health, which dove into the oncology analytics field a few years ago but made virtually no progress in improving cancer treatment.

With any luck, however, Via Oncology will be more successful at moving the needle in cancer care. The company, which offers decision support for cancer treatment and best practices in cancer care management, was just acquired by information analytics firm Elsevier, which plans to leverage the company’s technology to support its healthcare business.

Elsevier’s Clinical Solutions group works to improve patient outcomes, reduce clinical errors and optimize cost and reimbursements for providers. Via Oncology, a former subsidiary of the University of Pittsburgh Medical Center, develops and implements clinical pathways for cancer care. Via Oncology spent more than 15 years as part of UPMC prior to the acquisition.

Via Oncology’s Via Pathways tool relies on evidence-based content to create clinical algorithms covering 95% of cancer types treated in the US. The content was developed by oncologists. In addition to serving as a basis for algorithm development, Via Oncology also shares the content with physicians and their staff through its Via Portal, a decision support tool which integrates with provider EMRs.

According to Elsevier, Via Pathways addresses more than 2,000 unique patient presentations which can be addressed by clinical algorithms and recommendations for all major aspects of cancer care. The system can also offer nurse triage and symptom tracking, cost information analytics, quality reporting and medical home tools for cancer centers.

According to the prepared statement issued by Elsevier, UPMC will continue to be a Via Oncology customer, which makes it clear that the healthcare giant wasn’t dumping its subsidiary or selling it for a fire sale price.

That’s probably because in addition to UPMC, more than 1,500 oncology providers and community, hospital and academic settings hold Via Pathways licenses. What makes this model particularly neat is that these cancer centers are working collaboratively to improve the product as they use it. Too few specialty treatment professionals work together this effectively, so it’s good to see Via Oncology leveraging user knowledge this way.

While most of this seems clear, I was left with the question of what role, if any, genomics plays in Via Oncology’s strategy. While it may be working with such technologies behind the scenes, the company didn’t mention any such initiatives in its publicly-available information.

This approach seems to fly in the face of existing trends and in particular, physician expectations. For example, a recent survey of oncologists by medical publication Medscape found that 71% of respondents felt genomic testing was either very important or extremely important to their field.

However, Via Oncology may have something up its sleeve and is waiting for it to be mature before it dives into the genomics pool. We’ll just have to see what it does as part of Elsevier.

Are there other areas beyond cancer where a similar approach could be taken?

Talking Genomic Medicine at #CES2016

Posted on January 19, 2016 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

I was lucky to moderate a panel at the Digital Health Summit at CES 2016. The session was called “Look Who’s Talking: Newborn Genomic Data Enables Precision Medicine” and I was joined by 2 amazing panelists:

  • Andy De, Global Managing Director and General Manager for Healthcare and Life Sciences at Tableau
  • Aaron Black, Director, Informatics, Inova Translational Medicine Institute

It’s amazing to see the work Andy and Aaron are doing with genomic medicine. It’s truly uncharted territory and we’re still discovering what’s going to be possible. However, I think we do a good job looking at some of the things that are reality today in genomic medicine.

Check out all of the healthcare IT conferences we attend throughout the year.