Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

The Value of Machine Learning in Value-based Care

Posted on August 4, 2016 I Written By

The following is a guest blog post by Mary Hardy, Vice President of Healthcare for Ayasdi.

Variation is a natural element in most healthcare delivery. After all, every patient is unique. But unwarranted clinical variation—the kind that results from a lack of systems and collaboration or the inappropriate use of care and services—is another issue altogether.

Healthcare industry thought leaders have called for the reduction of such unwarranted variation as the key to improving the quality and decreasing the cost of care. They have declared, quite rightly, that the quality of care an individual receives should not depend on geography. In response, hospitals throughout the United States are taking on the significant challenge of understanding and managing this variation.

Most hospitals recognize that the ability to distill the right insights from patient data is the catalyst for eliminating unwarranted clinical variation and is essential to implementing care models based on value. However, the complexity of patient data—a complexity that will only increase with the impending onslaught of data from biometric and personal fitness devices—can be overwhelming to even the most advanced organizations. There aren’t enough data scientists or analysts to make sense of the exponentially growing data sets within each organization.

Enter machine learning. Machine learning applications combine algorithms from computational biology and other disciplines to find patterns within billions of data points. The power of these algorithms enables organizations to uncover the evidence-based insights required for success in the value-based care environment.

Machine Learning and the Evolutionary Leap in Clinical Pathway Development
Since the 1990s, provider organizations have attempted to curb unwarranted variation by developing clinical pathways. A multi-disciplinary team of providers use peer-reviewed literature and patient population data to develop and validate best-practice protocols and guidance for specific conditions, treatments, and outcomes.

However, the process is burdened by significant limitations. Pathways often require months or years to research, build, and validate. Additionally, today’s clinical pathways are typically one-size-fits-all. Health systems that have the resources to do so often employ their own experts, who review research, pull data, run tables and come to a consensus on the ideal clinical pathway, but are still constrained by the experts’ inability to make sense of billions of data points.

Additionally, once the clinical pathway has been established, hospitals have few resources for tracking the care team’s adherence to the agreed-upon protocol. This alone is enough to derail years of efforts to reduce unwarranted variation.

Machine learning is the evolutionary leap in clinical pathway development and adherence. Acceleration is certainly a positive. High-performance machines and algorithms can examine complex continuously growing data elements far faster and capture insights more comprehensively than traditional or homegrown analytics tools. (Imagine reducing the development of a clinical pathway from months or years to weeks or days.)

But the true value of machine learning is enabling provider organizations to leverage patient population data from their own systems of record to develop clinical pathways that are customized to the organization’s processes, demographics, and clinicians.

Additionally, machine learning applications empower organizations to precisely track care team adherence, improving communication and organization effectiveness. By guiding clinicians to follow best practices through each step of care delivery, clinical pathways that are rooted in machine learning ensure that all patients receive the same level of high-quality care at the lowest possible cost.

Machine Learning Proves its Value
St. Louis-based Mercy, one of the most innovative health systems in the world, used a machine-learning application to recreate and improve upon a clinical pathway for total knee replacement surgery.

Drawing from Mercy’s integrated electronic medical record (EMR), the application grouped data from a highly complex series of events related to the procedure and segmented it. It was then possible to adapt other methods from biology and signals processing to the problem of determining the optimal way to perform the procedure—which drugs, tests, implants and other processes contribute to that optimal outcome. It also was possible to link predictive machine learning methods like regression or classification to perform real-time pathway editing.

The application revealed that Mercy’s patients naturally divided into clusters or groups with similar outcomes. The primary metric of interest to Mercy as an indicator of high quality was length of stay (LOS). The system highlighted clusters of patients with the shortest LOS and quickly discerned what distinguished this cluster from patients with the longest LOS.

What this analysis revealed was an unforeseen and groundbreaking care pathway for high-quality total knee replacement. The common denominator between all patients with the shortest LOS and best outcomes was administration of pregabalin—a drug generally prescribed for shingles. A group of four physicians had seen something in the medical literature that led them to believe that administering the drug prior to surgery would inhibit postoperative pain, reduce opiate usage and produce faster ambulation. It did.

This innovation was happening in Mercy’s own backyard, and it was undeniably a best practice—the data revealed that each of the best outcomes included administration of this drug. Using traditional approaches, it is highly unlikely that Mercy would have asked the question, “What if we use a shingles drug to improve total knee replacement?” The superior outcomes of four physicians would have remained hidden in a sea of complex data.

This single procedure was worth over $1 million per year for Mercy in direct costs.

What Mercy’s experience demonstrates is that the most difficult, persistent and complex problems in healthcare can resolve themselves through data. The key lies in having the right tools to navigate that data’s complexity. The ability to determine at a glance what differentiates good outcomes from bad outcomes is incredibly powerful—and will transform care delivery.

Mary Hardy is the Vice President of Healthcare for Ayasdi, a developer of machine intelligent applications for health systems and payer organizations.

Making Precision Medicine a Reality with Dr. Delaney, SAP & Curtis Dudley, VP at Mercy

Posted on February 4, 2016 I Written By

John Lynn is the Founder of the blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of and John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

UPDATE: In case you missed the live interview, you can watch the interview on YouTube below:

You can also watch the “after party” where Shahid Shah joins us and extends the discussion we started:

Making Precision Medicine a Reality-blog

Ever since President Obama announced the precision medicine initiative, it’s become a hot topic in every healthcare organization. While it’s great to talk theoretically about what’s happening with precision medicine, I’m always more interested with what’s actually happening to make medicine more precise. That’s why I’m excited to sit down with a great panel of experts that are actually working in the trenches where precision medicine is being implemented.

On Monday, February 8, 2016 at 2 PM ET (11 AM PT) I’ll be hosting a live video interview with Curtis Dudley from Mercy and Dr. David Delaney from SAP where we’re going to dive into the work Curtis Dudley and his team are doing at Mercy around perioperative services analytics that improved quality outcomes and reduced delivery costs.

The great part is that you can join my live conversation with this panel of experts and even add your own comments to the discussion or ask them questions. All you need to do to watch live is visit this blog post on Monday, February 8, 2016 at 2 PM ET (11 AM PT) and watch the video embed at the bottom of the post or you can subscribe to the blab directly. We’ll be doing a more formal interview for the first 30 minutes and then open up the Blab to others who want to add to the conversation or ask us questions. The conversation will be recorded as well and available on this post after the interview.

Here are a few more details about our panelists:

If you can’t join our live video discussion or want to learn more, check out Mercy’s session at HIMSS16 called “HANA as the Key to Advanced Analytics for Population Health and Operational Performance” on March 1, 2016 at 11:00 a.m. at SAP Booth #5828.

If you’d like to see the archives of Healthcare Scene’s past interviews, you can find and subscribe to all of Healthcare Scene’s interviews on YouTube.