Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 3 of 3)

Posted on October 20, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Earlier parts of this article set the stage for understanding what the Alexa Diabetes Challenge is trying to achieve and how some finalists interpreted the mandate. We examine three more finalists in this final section.

DiaBetty from the University of Illinois-Chicago

DiaBetty focuses on a single, important aspect of diabetes: the effect of depression on the course of the disease. This project, developed by the Department of Psychiatry at the University of Illinois-Chicago, does many of the things that other finalists in this article do–accepting data from EHRs, dialoguing with the individual, presenting educational materials on nutrition and medication, etc.–but with the emphasis on inquiring about mood and handling the impact that depression-like symptoms can have on behavior that affects Type 2 diabetes.

Olu Ajilore, Associate Professor and co-director of the CoNECt lab, told me that his department benefited greatly from close collaboration with bioengineering and computer science colleagues who, before DiaBetty, worked on another project that linked computing with clinical needs. Although they used some built-in capabilities of the Alexa, they may move to Lex or another AI platform and build a stand-alone device. Their next step is to develop reliable clinical trials, checking the effect of DiaBetty on health outcomes such as medication compliance, visits, and blood sugar levels, as well as cost reductions.

T2D2 from Columbia University

Just as DiaBetty explores the impact of mood on diabetes, T2D2 (which stands for “Taming Type 2 Diabetes, Together”) focuses on nutrition. Far more than sugar intake is involved in the health of people with diabetes. Elliot Mitchell, a PhD student who led the T2D2 team under Assistant Professor Lena Mamykina in the Department of Biomedical Informatics, told me that the balance of macronutrients (carbohydrates, fat, and protein) is important.

T2D2 is currently a prototype, developed as a combination of Alexa Skill and a chatbot based on Lex. The Alexa Skills Kit handle voice interactions. Both the Skill and the chatbot communicate with a back end that handles accounts and logic. Although related Columbia University technology in diabetes self-management is used, both the NLP and the voice interface were developed specifically for the Alexa Diabetes Challenge. The T2D2 team included people from the disciplines of computer interaction, data science, nursing, and behavioral nutrition.

The user invokes Alexa to tell it blood sugar values and the contents of meals. T2D2, in response, offers recipe recommendations and other advice. Like many of the finalists in this article, it looks back at meals over time, sees how combinations of nutrients matched changes in blood sugar, and personalizes its food recommendations.

For each patient, before it gets to know that patient’s diet, T2D2 can make food recommendations based on what is popular in their ZIP code. It can change these as it watches the patient’s choices and records comments to recommendations (for instance, “I don’t like that food”).

Data is also anonymized and aggregated for both recommendations and future research.

The care team and family caregivers are also involved, although less intensely than some other finalists do. The patient can offer caregivers a one-page report listing a plot of blood sugar by time and day for the previous two weeks, along with goals and progress made, and questions. The patient can also connect her account and share key medical information with family and friends, a feature called the Supportive Network.

The team’s next phase is run studies to evaluable some of assumptions they made when developing T2D2, and improve it for eventual release into the field.

Sugarpod from Wellpepper

I’ll finish this article with the winner of the challenge, already covered by an earlier article. Since the publication of the article, according to the founder and CEO of Wellpepper, Anne Weiler, the company has integrated some of Sugarpod functions into a bathroom scale. When a person stands on the scale, it takes an image of their feet and uploads it to sites that both the individual and their doctor can view. A machine learning image classifier can check the photo for problems such as diabetic foot ulcers. The scale interface can also ask the patient for quick information such as whether they took their medication and what their blood sugar is. Extended conversations are avoided, under the assumption that people don’t want to have them in the bathroom. The company designed its experiences to be integrated throughout the person’s day: stepping on the scale and answering a few questions in the morning, interacting with the care plan on a mobile device at work, and checking notifications and messages with an Echo device in the evening.

Any machine that takes pictures can arouse worry when installed in a bathroom. While taking the challenge and talking to people with diabetes, Wellpepper learned to add a light that goes on when the camera is taking a picture.

This kind of responsiveness to patient representatives in the field will determine the success of each of the finalists in this challenge. They all strive for behavioral change through connected health, and this strategy is completely reliant on engagement, trust, and collaboration by the person with a chronic illness.

The potential of engagement through voice is just beginning to be tapped. There is evidence, for instance, that serious illnesses can be diagnosed by analyzing voice patterns. As we come up on the annual Connected Health Conference this month, I will be interested to see how many participating developers share the common themes that turned up during the Alexa Diabetes Challenge.

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 2 of 3)

Posted on October 19, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article introduced the problems of computer interfaces in health care and mentioned some current uses for natural language processing (NLP) for apps aimed at clinicians. I also summarized the common goals, problems, and solutions I found among the five finalists in the Alexa Diabetes Challenge. This part of the article shows the particular twist given by each finalist.

My GluCoach from HCL America in Partnership With Ayogo

There are two levels from which to view My GluCoach. On one level, it’s an interactive tool exemplifying one of the goals I listed earlier–intense engagement with patients over daily behavior–as well as the theme of comprehensivenesss. The interactions that My GluCoach offers were divided into three types by Abhishek Shankar, a Vice President at HCL Technologies America:

  • Teacher: the service can answer questions about diabetes and pull up stored educational materials

  • Coach: the service can track behavior by interacting with devices and prompt the patient to eat differently or go out for exercise. In addition to asking questions, a patient can set up Alexa to deliver alarms at particular times, a feature My GluCoach uses to deliver advice.

  • Assistant: provide conveniences to the patient, such as ordering a cab to take her to an appointment.

On a higher level, My GluCoach fits into broader services offered to health care institutions by HCL Technologies as part of a population health program. In creating the service HCL partnered with Ayogo, which develops a mobile platform for patient engagement and tracking. HCL has also designed the service as a general health care platform that can be expanded over the next six to twelve months to cover medical conditions besides diabetes.

Another theme I discussed earlier, interactions with outside data and the use of machine learning, are key to my GluCoach. For its demo at the challenge, My GluCoach took data about exercise from a Fitbit. It can potentially work with any device that shares information, and HCL plans to integrate the service with common EHRs. As My GluCoach gets to know the individual who uses it over months and years, it can tailor its responses more and more intelligently to the learning style and personality of the patient.

Patterns of eating, medical compliance, and other data are not the only input to machine learning. Shankar pointed out that different patients require different types of interventions. Some simply want to be given concrete advice and told what to do. Others want to be presented with information and then make their own decisions. My GluCoach will hopefully adapt to whatever style works best for the particular individual. This affective response–together with a general tone of humor and friendliness–will win the trust of the individual.

PIA from Ejenta

PIA, which stands for “personal intelligent agent,” manages care plans, delivering information to the affected patients as well as their care teams and concerned relatives. It collects medical data and draws conclusions that allow it to generate alerts if something seems wrong. Patients can also ask PIA how they are doing, and the agent will respond with personalized feedback and advice based on what the agent has learned about them and their care plan.

I talked to Rachna Dhamija, who worked on a team that developed PIA as the founder and CEO of Ejenta. (The name Ejenta is a version of the word “agent” that entered the Bengali language as slang.) She said that the AI technology had been licensed from NASA, which had developed it to monitor astronauts’ health and other aspects of flights. Ejenta helped turn it into a care coordination tool with interfaces for the web and mobile devices at a major HMO to treat patients with chronic heart failure and high-risk pregnancies. Ejenta expanded their platform to include an Alexa interface for the diabetes challenge.

As a care management tool, PIA records targets such as glucose levels, goals, medication plans, nutrition plans, and action parameters such as how often to take measurements using the devices. Each caregiver, along the patient, has his or her own agent, and caregivers can monitor multiple patients. The patient has very granular control over sharing, telling PIA which kind of data can be sent to each caretaker. Access rights must be set on the web or a mobile device, because allowing Alexa to be used for that purpose might let someone trick the system into thinking he was the patient.

Besides Alexa, PIA takes data from devices (scales, blood glucose monitors, blood pressure monitors, etc.) and from EHRs in a HIPAA-compliant method. Because the service cannot wake up Alexa, it currently delivers notifications, alerts, and reminders by sending a secure message to the provider’s agent. The provider can then contact the patient by email or mobile phone. The team plans to integrate PIA with an Alexa notifications feature in the future, so that PIA can proactively communicate with the patient via Alexa.

PIA goes beyond the standard rules for alerts, allowing alerts and reminders to be customized based on what it learns about the patient. PIA uses machine learning to discover what is normal activity (such as weight fluctuations) for each patient and to make predictions based on the data, which can be shared with the care team.

The final section of this article covers DiaBetty, T2D2, and Sugarpod, the remaining finalists.

Alexa Can Truly Give Patients a Voice in Their Health Care (Part 1 of 3)

Posted on October 16, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The leading pharmaceutical and medical company Merck, together with Amazon Web Services, has recently been exploring the potential health impacts of voice interfaces and natural language processing (NLP) through an Alexa Diabetes Challenge. I recently talked to the five finalists in this challenge. This article explores the potential of new interfaces to transform the handling of chronic disease, and what the challenge reveals about currently available technology.

Alexa, of course, is the ground-breaking system that brings everyday voice interaction with computers into the home. Most of its uses are trivial (you can ask about today’s weather or change channels on your TV), but one must not underestimate the immense power of combining artificial intelligence with speech, one of the most basic and essential human activities. The potential of this interface for disabled or disoriented people is particularly intriguing.

The diabetes challenge is a nice focal point for exploring the more serious contribution made by voice interfaces and NLP. Because of the alarming global spread of this illness, the challenge also presents immediate opportunities that I hope the participants succeed in productizing and releasing into the field. Using the challenge’s published criteria, the judges today announced Sugarpod from Wellpepper as the winner.

This article will list some common themes among the five finalists, look at the background about current EHR interfaces and NLP, and say a bit about the unique achievement of each finalist.

Common themes

Overlapping visions of goals, problems, and solutions appeared among the finalists I interviewed for the diabetes challenge:

  • A voice interface allows more frequent and easier interactions with at-risk individuals who have chronic conditions, potentially achieving the behavioral health goal of helping a person make the right health decisions on a daily or even hourly basis.

  • Contestants seek to integrate many levels of patient intervention into their tools: responding to questions, collecting vital signs and behavioral data, issuing alerts, providing recommendations, delivering educational background material, and so on.

  • Services in this challenge go far beyond interactions between Alexa and the individual. The systems commonly anonymize and aggregate data in order to perform analytics that they hope will improve the service and provide valuable public health information to health care providers. They also facilitate communication of crucial health data between the individual and her care team.

  • Given the use of data and AI, customization is a big part of the tools. They are expected to determine the unique characteristics of each patient’s disease and behavior, and adapt their advice to the individual.

  • In addition to Alexa’s built-in language recognition capabilities, Amazon provides the Lex service for sophisticated text processing. Some contestants used Lex, while others drew on other research they had done building their own natural language processing engines.

  • Alexa never initiates a dialog, merely responding when the user wakes it up. The device can present a visual or audio notification when new material is present, but it still depends on the user to request the content. Thus, contestants are using other channels to deliver reminders and alerts such as messaging on the individual’s cell phone or alerting a provider.

  • Alexa is not HIPAA-compliant, but may achieve compliance in the future. This would help health services turn their voice interfaces into viable products and enter the mainstream.

Some background on interfaces and NLP

The poor state of current computing interfaces in the medical field is no secret–in fact, it is one of the loudest and most insistent complaints by doctors, such as on sites like KevinMD. You can visit Healthcare IT News or JAMA regularly and read the damning indictments.

Several factors can be blamed for this situation, including unsophisticated electronic health records (EHRs) and arbitrary reporting requirements by Centers for Medicare & Medicaid Services (CMS). Natural language processing may provide one of the technical solutions to these problems. The NLP services by Nuance are already famous. An encouraging study finds substantial time savings through using NLP to enter doctor’s insights. And on the other end–where doctors are searching the notes they previously entered for information–a service called Butter.ai uses NLP for intelligent searches. Unsurprisingly, the American Health Information Management Association (AHIMA) looks forward to the contributions of NLP.

Some app developers are now exploring voice interfaces and NLP on the patient side. I covered two such companies, including the one that ultimately won the Alexa Diabetes Challenge, in another article. In general, developers using these interfaces hope to eliminate the fuss and abstraction in health apps that frustrate many consumers, thereby reaching new populations and interacting with them more frequently, with deeper relationships.

The next two parts of this article turn to each of the five finalists, to show the use they are making of Alexa.

CVS Launches Analytics-Based Diabetes Mgmt Program For PBMs

Posted on December 29, 2016 I Written By

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she’s served as editor in chief of several healthcare B2B sites.

CVS Health has launched a new diabetes management program for its pharmacy benefit management customers designed to improve diabetes outcomes through advanced analytics.  The new program will be available in early 2017.

The CVS program, Transform Diabetes Care, is designed to cut pharmacy and medical costs by improving diabetics’ medication adherence, A1C levels and health behaviors.

CVS is so confident that it can improve diabetics’ self-management that it’s guaranteeing that percentage increases in spending for antidiabetic meds will remain in the single digits – and apparently that’s pretty good. Or looked another way, CVS contends that its PBM clients could save anywhere from $3,000 to $5,000 per year for each member that improves their diabetes control.

To achieve these results, CVS is using analytics tools to find specific ways enrolled members can better care for themselves. The pharmacy giant is also using its Health Engagement Engine to find opportunities for personalized counseling with diabetics. The counseling sessions, driven by this technology, will be delivered at no charge to enrolled members, either in person at a CVS pharmacy location or via telephone.

Interestingly, members will also have access to diabetes visit at CVS’s Minute Clinics – at no out-of-pocket cost. I’ve seen few occasions where CVS seems to have really milked the existence of Minute Clinics for a broader purpose, and often wondered where the long-term value was in the commodity care they deliver. But this kind of approach makes sense.

Anyway, not surprisingly the program also includes a connected health component. Diabetics who participate in the program will be offered a connected glucometer, and when they use it, the device will share their blood glucose levels with a pharmacist-led team via a “health cloud.” (It might be good if CVS shared details on this — after all, calling it a health cloud is more than a little vague – but it appears that the idea is to make decentralized patient data sharing easy.) And of course, members have access to tools like medication refill reminders, plus the ability to refill a prescription via two-way texting, via the CVS Pharmacy.

Expect to see a lot more of this approach, which makes too much sense to ignore. In fact, CVS itself plans to launch a suite of “Transform Care” programs focused on managing expensive chronic conditions. I can only assume that its competitors will follow suit.

Meanwhile, I should note that while I expect to see providers launch similar efforts, so far I haven’t seen many attempts. That may be because patient engagement technology is relatively new, and probably pretty expensive too. Still, as value-based care becomes the dominant payment model, providers will need to get better at managing chronic diseases systematically. Perhaps, as the CVS effort unfolds, it can provide useful ideas to consider.