Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and HIPAA for FREE!!

An Intelligent Interface for Patient Diagnosis by HealthTap

Posted on January 9, 2017 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

HealthTap, an organization that’s hard to categorize, really should appear in more studies of modern health care. Analysts are agog over the size of the Veterans Administration’s clientele, and over a couple other major institutions such as Kaiser Permanente–but who is looking at the 104,000 physicians and the hundreds of millions of patients from 174 countries in HealthTap’s database?

HealthTap allows patients to connect with doctors online, and additionally hosts an enormous repository of doctors’ answers to health questions. In addition to its sheer size and its unique combination of services, HealthTap is ahead of most other health care institutions in its use of data.

I talked with founder and CEO Ron Gutman about a new service, Dr. AI, that triages the patient and guides her toward a treatment plan: online resources for small problems, doctors for major problems, and even a recommendation to head off to the emergency room when that is warranted. The service builds on the patient/doctor interactions HealthTap has offered over its six years of operation, but is fully automated.

Somewhat reminiscent of IBM’s Watson, Dr. AI evaluates the patient’s symptoms and searches a database for possible diagnoses. But the Dr. AI service differs from Watson in several key aspects:

  • Whereas Watson searches a huge collection of clinical research journals, HealthTap searches its own repository of doctor/patient interactions and advice given by its participating doctors. Thus, Dr. AI is more in line with modern “big data” analytics, such as PatientsLikeMe does.

  • More importantly, HealthTap potentially knows more about the patient than Watson does, because the patient can build up a history with HealthTap.

  • And most important, Dr. AI is interactive. Instead of doing a one-time search, it employs artificial intelligence techniques to generate questions. For instance, it may ask, “Did you take an airplane flight recently?” Each question arises from the totality of what HealthTap knows about the patient and the patterns found in HealthTap’s data.

The following video shows Dr. AI in action:

A well-stocked larder of artificial intelligence techniques feed Dr. AI’s interactive triage service: machine learning, natural language processing (because the doctor advice is stored in plain text), Bayesian learning, and pattern recognition. These allow a dialog tailored to each patient that is, to my knowledge, unique in the health care field.

HealthTap continues to grow as a platform for remote diagnosis and treatment. In a world with too few clinicians, it may become standard for people outside the traditional health care system.

Newly Released Open Source Libraries for Health Analytics from Health Catalyst

Posted on December 19, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

I celebrate and try to report on each addition to the pool of open source resources for health care. Some, of course, are more significant than others, and I suspect the new healthcare.ai libraries released by the Health Catalyst organization will prove to be one of the significant offerings. One can do a search for health care software on sites such as GitHub and turn up thousands of hits (of which many are probably under open and free licenses), but for a company with the reputation and accomplishments of Health Catalyst to open up the tools it has been using internally gives healthcare.ai great legitimacy from the start.

According to Health Catalyst’s Director of Data Science Levi Thatcher, the main author of the project, these tools are tried and tested. Many of them are based on popular free software libraries in the general machine learning space: he mentions in particular the Python Scikit-learn library and the R language’s caret and and data.table libraries. The contribution of Health Catalyst is to build on these general tools to produce libraries tailored for the needs of health care facilities, with their unique populations, workflows, and billing needs. The company has used the libraries to deploy models related to operational, financial, and clinical questions. Eventually, Thatcher says, most of Health Catalyst’s applications will use predictive analytics based on healthcare.ai, and now other programmers can too.

Currently, Health Catalyst is providing libraries for R and Python. Moving them from internal projects to open source was not particularly difficult, according to Thatcher: the team mainly had to improve the documentation and broaden the range of usable data connections (ODBC and more). The packages can be installed in the manner common to free software projects in these language. The documentation includes guidelines for submitting changes, so that an ecosystem of developers can build up around the software. When I asked about RESTful APIs, Thatcher answered, “We do plan on using RESTful APIs in our work—mainly as a way of integrating these tools with ETL processes.”

I asked Thatcher one more general question: why did Health Catalyst open the tools? What benefit do they derive as a company by giving away their creative work? Thatcher answers, “We want to elevate the industry and educate it about what’s possible, because a rising tide will lift all boats. With more data publicly available each year, I’m excited to see what new and open clinical or socio-economic datasets are used to optimize decisions related to health.”

An Interview with Open Source Health IT Project: LibreHealth

Posted on December 7, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

LibreHealth is the largest health IT project to emerge recently, particularly in the area of free and open source software. In this video, Dr. Judy Gichoya of the LibreHealth project explains what clinicians in Africa are dealing with and what their IT needs are.

Both developed and developing countries need better health IT systems to improve patient care. In the developed countries, electronic records and other health IT systems sprout complexities that reflect the health care systems in which they function. But these IT systems are far removed from real-life needs of doctors caring for patients, and have transformed physicians in the US into its largest data entry workforce.

In developing countries, scarcity is the norm, and gains cannot be achieved without innovative approaches to delivering health care. The LibreHealth team hopes to learn from both the failures of proprietary IT systems and the opportunities missed by various open source systems such as OpenMRS and OpenEMR. Dr. Gichoya describes the future of open source health IT systems and the health projects united under LibreHealth. The project seeks to provide transparency and be a patient advocate when developing and deploying health systems.

Learn more in my podcast interview with Dr. Gichoya below:

You can find more information and connect with the community on the LibreHealth forums.

Check out all the Healthcare Scene interviews on the Healthcare Scene YouTube channel.

Ignoring the Obvious: Major Health IT Organizations Put Aside Patients

Posted on November 18, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Frustrated stories from patients as well as health care providers repeatedly underline the importance of making a seismic shift in the storage and control of patient data. The current system leads to inaccessible records, patients who reach nursing homes or other treatment centers without information crucial to their care, excess radiation from repeated tests, massive data breaches that compromise thousands of patients at a time, and–most notably for quality–patients excluded from planning their own care.

A simple solution became available over the past 25 years with the widespread adoption of the Web, and has been rendered even easier by modern Software as a Service (SaaS): storing the entire record over the patient’s lifetime with the patient. This was unfeasible in the age of patient records, but is currently efficient, secure, and easy to manage. The only reason we didn’t switch to personal records years ago is the greed and bad faith of the health care institutions: keeping hold of the data allows them to exploit it in order to market treatments to patients that they don’t need, while hampering the ability of other institutions to recruit and treat patients.

So I wonder how the American Health Information Management Association (AHIMA) can’t feel ridiculous, if not a bit seamy, by releasing a 3000-word report on the patient data crisis this past October without even a hint at the solution. On the contrary: using words designed to protect the privileges of the health care provider, they call this crisis a “patient matching” problem. The very terminology sets in stone the current practice of scattering health records among providers, with the assumption that selective records will be recombined for particular treatment purposes–if those records can be found.

A reading of their report reveals that the crisis outpaces the tepid remedies suggested by conventional institutions. In a survey, institutions admitted that up to eight percent of their patients have duplicate records in the institutions own systems (six percent of the survey respondents reported this high figure). Institutions also report spending large efforts on mitigating the problems of duplicate records: 47 percent do so during patient registration, and 72 percent run efforts on a weekly basis. AHIMA didn’t even ask about the problems caused by lack of access to records from other providers.

To pretend they are addressing the problem without actually offering the solution, AHIMA issues some rather bizarre recommendations. Along with extending the same processes currently in use, they suggest using biometrics such as fingerprints or retinal scans. This has a worrisome impact on patient privacy–it puts out more and more information that is indelibly linked to persons and that can be used to track those persons. What are the implications of such recommendations in the current environment, which features not only targeted system intrusions by international criminal organizations, but the unaccountable transfer of data by those authorized to collect it? We should strenuously oppose the collection of unnecessary personal information. But it makes sense for a professional organization to seek a solution that leads to the installation of more equipment, requires more specialized staff, tightens their control over individuals, and raises health care costs.

There’s nothing wrong with certain modest suggestions in the AHIMA report. Standardizing the registration process and following the basic information practices they recommend (compliance with regulations, etc.) should be in place at any professional institution. But none of that will bring together the records doctors and other health care professionals need to deliver care.

Years ago, Microsoft HealthVault and Google Health tried to bring patient control into the mainstream. Neither caught on, because the time was not right. A major barrier to adoption was resistance by health care providers, who (together with the vendors of their electronic health records) disallowed patients from downloading provider data. The Department of Veterans Affairs Blue Button won fans in both the veterans’ community and a few other institutions (for instance, Kaiser Permanente supported it) but turned out to be an imperfect standard and was never integrated into a true patient-centered health system.

But cracks in the current system are appearing as health care providers are shoved toward fee-for-value systems. Technologies are also coalescing around personal records. Notably, the open source HIE of One project, described in another article, employs standard security and authentication protocols to give patients control over what data gets sent out and who receives it.

Patient control, not patient “matching,” is the future of health care. The patient will ensure that her doctors and any legitimate researchers get access to data. Certainly, there are serious issues left, such as data management for patients who have trouble with the technical side of the storage systems, and informed consent protocols that give researchers maximum opportunities for deriving beneficial insights from patient data. But the current system isn’t working for doctors or researchers any better than it is for patients. A strong personal health record system will advance us in all areas of health care.

Vocera Aims For More Intelligent Hospital Interventions

Posted on November 14, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Everyday scenes that Vocera Communications would like to eliminate from hospitals:

  • A nurse responds to an urgent change in the patient’s condition. While the nurse is caring for the patient, monitors continue to go off with alerts about the situation, distracting her and increasing the stress for both herself and the patient.

  • A monitor beeps in response to a dangerous change in a patient’s condition. A nurse pages the physician in charge. The physician calls back to the nurse’s station, but the nurse is off on another task. They play telephone tag while patient needs go unmet around the floor.

  • A nurse is engaged in a delicate operation when her mobile device goes off, distracting her at a crucial moment. Neither the patient she is currently working with nor the one whose condition triggered the alert gets the attention he needs.

  • A nurse describes a change in a patient’s condition to a physician, who promises to order a new medication. The nurse then checks the medical record every few minutes in the hope of seeing when the order went through. (This is similar to a common computing problem called “polling”, where a software or hardware component wakes up regularly just to see whether data has come in for it to handle.)

Wasteful, nerve-racking situations such as these have caught the attention of Vocera over the past several years as it has rolled out communications devices and services for hospital staff, and have just been driven forward by its purchase of the software firm Extension Healthcare.

Vocera Communications’ and Extension Healthcare’s solutions blend to take pressures off clinicians in hospitals and improve their responses to patient needs. According to Brent Lang, President and CEO of Vocera Communications, the two companies partnered together on 40 customers before the acquisition. They take data from multiple sources–such as patient monitors and electronic health records–to make intelligent decisions about “when to send alarms, whom to send them to, and what information to include” so the responding nurse or doctor has the information needed to make a quick and effective intervention.

Hospitals are gradually adopting technological solutions that other parts of society got used to long ago. People are gradually moving away from setting their lights and thermostats by hand to Internet-of-Things systems that can adjust the lights and thermostats according to who is in the house. The combination of Vocera and Extension Healthcare should be able to do the same for patient care.

One simple example concerns the first scenario with which I started this article. Vocera can integrate with the hospital’s location monitoring (through devices worn by health personnel) that the system can consult to see whether the nurse is in the same room as the patient for whom the alert is generated. The system can then stop forwarding alarms about that patient to the nurse.

The nurse can also inform the system when she is busy, and alerts from other patients can be sent to a back-up nurse.

Extension Healthcare can deliver messages to a range of devices, but the Vocera badge and smartphone app work particularly well with it because they can deliver contextual information instead of just an alert. Hospitals can define protocols stating that when certain types of devices deliver certain types of alerts, they should be accompanied by particular types of data (such as relevant vital signs). Extension Healthcare can gather and deliver the data, which the Vocera badge or smartphone app can then display.

Lang hopes the integrated systems can help the professionals prioritize their interventions. Nurses are interrupt-driven, and it’s hard for them to keep the most important tasks in mind–a situation that leads to burn-out. The solutions Vocera is putting together may significantly change workflows and improve care.

HealthTap Announces a Comprehensive Health App Platform

Posted on November 10, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

For the past five years, HealthTap has been building a network of doctors and patients who exchange information and advice through information forums, messaging, video teleconferencing, and other integrated services. According to CEO Ron Gutman, all that platform building has taught them a lot about what health app developers need–knowledge that they’ve expanded by listening to hospitals and third-party app developers over the years. On Tuesday, November 1, HealthTap announced a comprehensive cloud platform pulling together all these ideas. The features in the press release read like a wish list from health app developers:

  • Text, voice, and video messaging

  • Telemedicine

  • Population health

  • Predictive modeling

  • Device input and other patient-generated data

  • Handling clinical data from electronic health records

  • Aggregated data on patient groups, such as the frequency of concepts in the population

  • The ability to view timelines on patients

  • Searchable content from the huge library of clinical advice posted to HealthTap by its roster of more than 100,000 doctors

  • Identity management, so that patients and clinicians can verify who they are and connect securely

  • Customer relationship management through messaging

Many of the APIs covering these topics are covered in the developer documentation, and others are available by application from qualified developers.

Gutman told me that three to four years of work went into this platform, and that he hopes it can reduce the multi-year developments efforts his team had to deal with to just weeks for other developers hoping to innovate in the health care field. Transparency is promoted as a key value, because the developer terms required developers to “Clearly inform users what data you collect (with their consent) as well as and how you use the data you collect or that we (HealthTap) provides to you.” Even so, some items are restricted even more, such as adherence data and health goals.

In addition to RESTful APIs, the platform has SDKs for iOS, Android, and JavasScript. CTO Sastry Nanduri says that these SDKs permit apps to incorporate some workflows, such as making virtual appointments. His philosophy is that, “We do the work and make it easy for the developers.”

HealthTap has created its own formats and APIs instead of using existing standards such as the Open mHealth defined for medical devices (described in another article). A diversity of formats may make adoption harder. But the platform does harmonize diverse data from different sources into predictable formats, so that things such as blood glucose and body weight are shown in fixed units. Nanduri points out that most of their work has not been done by other organizations in an open, API format.

In any case, central to HealthTap’s goals and efforts is the sharing of data among organizations. If Partners Healthcare or Kaiser Permanente can open their data through HealthTap’s APIs, it can all be combined with the aggregated data from millions of records HealthTap has built up over time.

Offering this platform in HealthTap’s cloud gives it many advantages. Foremost is the enormous data repository of both patients and content served up by the platform. Second, identity management is automatically provided through the secure and robust platform HealthTap has always used for signing up patients and clinicians. Clinicians are carefully validated. Theoretically, a developer could also use an independent means of authenticating patients, so that someone can use apps built on the platform without a HealthTap account.

They are also exploring a blockchain solution for tracking permissions and contracts.

The proof of this huge undertaking will be in its adoption. I’m sure HealthTap’s partners and many other organizations will play with the platform and try to bring apps to life through it, either for internal use or for widespread distribution. Nanduri says that they are ramping up carefully, reviewing applications one by one, and will talk to each of their early developers to find out their goals and offer guidance to creating a successful app. Time will tell whether HealthTap has, as Gutman says, created the platform their developers wish they had when they started the company.

A New Meaning for Connected Health at 2016 Symposium (Part 4 of 4)

Posted on November 8, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous section of this article continued our exploration of the integration of health care into daily life. This section wraps up the article with related insights, including some thoughts about the future.

Memorable moments
I had the chance to meet with Casper de Clercq, who has set up a venture capital plan devoted to health as a General Partner at Norwest Venture Partners. He recommends that manufacturers and clinicians give patients a device that collects data while doing something else they find useful, so that they are motivated to keep wearing it. As an example, he cited the Beddit sleep tracker, which works through sensors embedded (no pun intended) in the user’s bed.

He has found that successful companies pursue gradual, incremental steps toward automated programs. It is important to start with a manual process that works (such as phoning or texting patients from the provider), then move to semi-automation and finally, if feasible, full automation. The product must also be field-tested; one cannot depend on a pilot. This advice matches what Glen Tullman, CEO of Livongo Health, said in his keynote: instead of doing a pilot, try something out in the field and change quickly if it doesn’t work.

Despite his call for gradual change, de Clercq advises that companies show an ROI within one year–otherwise, the field of health care may have evolved and the solution may be irrelevant.

He also recommends a human component in any health program. The chief barrier to success is getting the individual to go along with both the initial activation and continuing motivation. Gamification, behavioral economics, and social connections can all enhance this participation.

A dazzling keynote on videogames for health was delivered by Adam Gazzaley, who runs Neuroscience labs at the University of California at San Francisco. He pointed out that conventional treatments get feedback on patient reactions far too slowly–sometimes months after the reaction has occurred. In the field of mental health, His goal is to supplement (not replace) medications with videogames, and to provide instant feedback to game players and their treatment staff alike. Videogames not only provide a closed-loop system (meaning that feedback is instantaneous), but also engage patients by being fun and offering real-time rewards. Attention spans, anxiety, and memory are among the issues he expects games to improve. Education and wellness are also on his game plan. This is certainly one talk where I did not multitask (which is correlated with reduced performance)!

A future, hopefully bigger symposium
The Connected Health symposium has always been a production of the Boston Partners Health Care conglomerate, a part of their Connected Health division. The leader of the division, Dr. Joseph Kvedar, introduced the symposium by expressing satisfaction that so many companies and organizations are taking various steps to make connected health a reality, then labeled three areas where leadership is still required:

  • Reassuring patients that the technologies and practices work for them. Most people will be willing to adopt these practices when urged by their doctors. But their privacy must be protected. This requires low-cost solutions to the well-known security problems in EHRs and devices–the latter being part of the Internet of Things, whose vulnerability was exposed by the recent attack on Dyn and other major Internet sites.

  • Relieving the pressures on clinicians. Kvedar reported that 45 percent of providers would like to adopt connected health practices, but only 12 percent do so. One of the major concerns holding them back is the possibility of data overload, along with liability for some indicator of ill health that they miss in the flood of updates. Partners Connected Health will soon launch a provider adoption initiative that deals with their concerns.

  • Scaling. Pilot projects in connected health invest a lot of researcher time and offers a lot of incentives to develop engagement among their subjects. Because engagement is the whole goal of connected health, the pilot may succeed but prove hard to turn into a widespread practice. Another barrier to scaling is consumers’ lack of tolerance for the smallest glitches or barriers to adoption. Providers, also, insist that new practices fit their established workflows.

Dr. Kvedar announced at this symposium that they would be doing future symposia in conjunction with the Personal Connected Health Alliance (Formerly the mHealth Summit owned by HIMSS), a collaboration that makes sense. Large as Partners Health Care is, the symposium reaches much farther into the health care industry. The collaboration should bring more resources and more attendees, establishing the ideals of connected health as a national and even international movement.

A New Meaning for Connected Health at 2016 Symposium (Part 3 of 4)

Posted on November 7, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous section of this article paused during a discussion of the accuracy and uses of devices. At a panel on patient generated data, a speaker said that one factor holding back the use of patient data was the lack of sophistication in EHRs. They must be enhanced to preserve the provenance of data: whether it came from a device or from a manual record by the patient, and whether the device was consumer-grade or a well-tested medical device. Doctors invest different levels of trust in different methods of collecting data: devices can provide more objective information than other ways of asking patients for data. A participant in the panel also pointed out that devices are more reliable in the lab than under real-world conditions. Consumers must be educated about the proper use of devices, such as whether to sit down and how to hold their arms when taking their blood pressure.

Costantini decried the continuing silos in both data sharing and health care delivery. She said only half of doctors share patient data with other doctors or caretakers. She also praised the recent collaboration between Philips and Qualcomm to make it easier for device data to get into medical records. Other organizations that have been addressing that issue for some time include Open mHealth, which I reviewed in an earlier article, and Validic.

Oozing into workflow
The biggest complaint I hear from clinicians about EHRs–aside from the time wasted in their use, which may be a symptom of the bigger problem-is that the EHRs disrupt workflow. Just as connected health must integrate with patient lives as seamlessly as possible, it should recognize how teams work and provide them with reasonable workflows. This includes not only entering existing workflows as naturally as capillary action, but helping providers adopt better ones.

The Veterans Administration is forging into this area with a new interface called the Enterprise Health Management Platform (eHMP). I mentioned it in a recent article on the future of the VA’s EHR. A data integration and display tool, eHMP is agnostic as to data source. It can be used to extend the VistA EHR (or potentially replace it) with other offerings. Although eHMP currently displays a modern dashboard format, as described in a video demo by Shane Mcnamee, the tool aims to be much more than that. It incorporates Business Process Modeling Notation (BPMN) and the WS-Human Task Specification to provide workflow support. The Activity Management Service in eHMP puts Clinical Best Practices directly into the workflow of health care providers.

Clinicians can use eHMP to determine where a consultation request goes; currently, the system is based on Red Hat’s BPMN engine. If one physician asks another to examine the patient, that task turns up on the receiving physician’s dashboard. Teams as well as individuals can be alerted to a patient need, and alerts can be marked as routine or urgent. The alerts can also be associated with time-outs, so that their importance is elevated if no one acts on them in the chosen amount of time.

eHMP is just in the beginning stages of workflow support. Developers are figuring out how to increase the sophistication of alerts, so that they offer a higher signal-to-noise ratio than most hospital CDS systems, and add intelligence to choose the best person to whom an alert should be directed. These improvements will hopefully free up time in the doctor’s session to discuss care in depth–what both patients and providers have long said they most want from the health care field.

At the Connected Health symposium, I found companies working on workflow as well. Dataiku (whose name is derived from “haiku”) has been offering data integration and analytics in several industries for the past three years. Workflows, including conditional branches and loops, can be defined through a graphical interface. Thus, a record may trigger a conditional inquiry: does a lab value exceed normal limits? if not, it is merely recorded, but if so, someone can be alerted to follow up.

Dataiku illustrates an all-in-one, comprehensive approach to analytics that remains open to extensions and integration with other systems. On the one hand, it covers the steps of receiving and processing data pretty well.

To clean incoming data (the biggest task on most data projects), their DSS system can use filters and even cluster data to find patterns. For instance, if 100 items list “Ohio” for their location, and one lists “Oiho”, the system can determine that the outlier is a probably misspelling. The system can also assign data to belonging to broad categories (string or integer) as well as more narrowly defined categories (such as social security number or ZIP code).

For analysis, Dataiku offers generic algorithms that are in wide use, such as linear regressions, and a variety of advanced machine learning (artificial intelligence) algorithms in the visual backend of the program–so the users don’t need to write a single line of code. Advanced users can also add their own algorithms coded in a variety of popular languages such as Python, R, and SQL. The software platform offers options for less technically knowledgeable users, pre-packaged solutions for various industries such as health care, security features such as audits, and artificial intelligence to propose an algorithm that works on the particular input data.

Orbita Health handles workflows between patients and providers to help with such issues as pain management and medication adherence. The company addresses ease of use by supporting voice-activated devices such as Amazon Echo, as well as some 250 other devices. Thus, a patient can send a message to a provider through a single statement to a voice-activated device or over another Internet-connected device. For workflow management, the provider can load a care plan into the system, and use Orbita’s orchestration engine (similar to the Business Process Modeling Notation mentioned earlier) to set up activities, such as sending a response to a patient’s device or comparing a measurement to the patient’s other measurements over time. Orbita’s system supports conditional actions, nests, and trees.

CitiusTech, founded in 2005, integrates data from patient devices and apps into provider’s data, allowing enterprise tools and data to be used in designing communications and behavioral management in the patient’s everyday life. The company’s Integrated Analytix platform offer more than 100,000 apps and devices from third-party developers. Industry studies have shown effective use of devices, with one study showing a 40% reduction in emergency room admissions among congestive heart failure patients through the use of scales, engaging the patients in following health protocols at home.

In a panel on behavior change and the psychology of motivation, participants pointed out that long-range change requires multiple, complex incentives. At the start, the patient may be motivated by a zeal to regain lost functioning, or even by extrinsic rewards such as lower insurance premiums. But eventually the patient needs to enfold the exercise program or other practice into his life as a natural activity. Rewards can include things like having a beer at the end of a run, or sharing daily activities with friends on social media.

In his keynote on behavioral medicine, the Co-founder & CEO of Omada Health, Sean Duffy, put up a stunningly complex chart showing the incentives, social connections, and other factors that go into the public’s adoption of health practices. At a panel called “Preserving the Human Touch in the Expanding World of Digital Therapies”, a speaker also gave the plausible advice that we tell patients what we can give back to them when collecting data.

The next section of this article offers some memorable statements at the conference, and a look toward the symposium’s future.

A New Meaning for Connected Health at 2016 Symposium (Part 2 of 4)

Posted on November 4, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous section of this article talked about making health a routine part of everyday life, particularly where consumer devices are concerned. We’ll continue in this section with other considerations aired at the symposium.

Tullman’s principles of simplicity, cited in the previous section, can be applied to a wide range of health IT. For instance, AdhereTech pill bottles can notify the patient with a phone call or text message if she misses a dose. Another example of a technology that is easily integrated into everyday life is a thermometer built into a vaginal ring that a woman can insert and use without special activation. This device was mentioned by Costantini during her keynote. The device can alert a woman–and, if she wants, her partner–to when she is most fertile.

Super-compact devices and fancy interfaces are not always necessary for a useful intervention. In a keynote, John Dwyer, Jr., President of the Global Alzheimer’s Platform Foundation, discussed a simple survey that his organization got large numbers of people to take. They uncovered a lot of undiagnosed cases of mental decline. I imagine that the people who chose to take the survey were experiencing possible symptoms and therefore were concerned about their mental abilities. Yet they apparently had not expressed concerns to their doctors; instead they responded to the online suggestion to take a survey.

Most of us spend a large chunk of our day at work, so wellness programs there are theoretically promising. A panel on workplace-connected health solutions talked about some of the barriers:

  • Inadequate communications. Employees need to be informed regularly that a program is available, and its benefits

  • Privacy guarantees. Employees must feel assured of a firewall between their employer and the organization handling their sensitive data.

  • Clear goals. A wellness program is not just a check-off box. Employers must know what they want to achieve and design programs around these goals.

I would add that employers should examine their own environment honestly before setting up a wellness program. It’s pretty hypocritical to offer a wellness program on the one hand while subjecting employees to stress, overwork, and bad ergonomics on the other.

Telehealth is also likely to grow, and in fact, 200 bills to improve regulation of telehealth are pending in Congress. A speaker at a panel on preserving the human touch said that the Centers for Medicare & Medicaid Services are held back by uncertainty about how to measure telehealth’s value. Another speaker pointed out that we have a severe shortage of mental health professionals, and that many areas lack access to them. Telehealth may improve access.

It all comes down to the environment
Health care has to fully acknowledge the role of environmental factors in creating sickness. These include the marketing of fatty and sugary foods, the trapping of poor and minority people in areas with air and water pollution, the barriers to getting health care (sick leave, geography, insurance gaps, ignorance of gender issues, and so forth), the government subsidization of gambling, and much more. Similar issues came up during a keynote by David Torchiana, President & CEO and Partners HealthCare.

In her keynote, Jo Ann Jenkins, the CEO of AARP, quoted Atul Gawande as saying that we have medicalized aging and are failing to support the elderly. We have to see them as functioning individuals and help to support their health instead of focusing on when things go wrong. This includes focusing on prevention and ensuring that they have access to professional health care while they are still well. It also means restructuring our living spaces and lifestyles so the elderly can remain safely in their homes, get regular exercise, and eat well.

These problems call for a massive legislative and regulatory effort. But as a participant said on the panel of disruptive women in health care, plenty of money goes into promoting the interests of large hospitals, insurers, and device manufacturers, but nobody knows how to actually lobby for health care. Look at the barriers reached by Michelle Obama’s Let’s Move campaign, which fell short of ambitious goals in improving American’s nutrition.

Grounding devices on a firm foundation
A repeated theme at this symposium was making data collection by patients easier–so easy in fact that they can just launch data collection and not think about it. To be sure, some people are comfortable with health technology: according to Costantini, 60 percent of US smartphone users manage their health in some way through those devices. Nevertheless, if people have to consciously choose when to send data–even a click of a button–many will drop out of the program.

At a break-out session during the 2015 Health Datapalooza, I heard prospective device makers express anxiety over the gargantuan task of getting their products accepted by the industry. The gold standard for health care adoption, of course, is FDA approval based on rigorous clinical trials. One participant in the Datapalooza workshop assured the others that he had gotten his device through the FDA process, and that they could to.

Attitudes seem to have shifted over the past year, and many more manufacturers are treating FDA approval as a natural step in their development process, keeping their eyes on the prize of clinical adoption. Keith Carlton, CEO of HUINNO, in a panel on wearables, said that accuracy is critical to stand out in the marketplace and to counter the confusion caused by manufacturers that substitute hype for good performance.

Clinical trials for devices don’t have to be the billion-dollar, drawn-out ordeals suffered by pharma companies. Devices are rarely responsible for side effects (except for implantables) and therefore can be approved after a few months of testing.

A representative of BewellConnect told me that their road to approval took 9-12 months, and involved comparing the results of their devices to those of robust medical devices that had been previously approved. Typical BewellConnect devices include blood pressure cuffs and an infrared thermometer that quickly shows the patient’s temperature after being held near his temple. This thermometer has been used around the world in situations where it’s important to avoid contact with patients, such as in Ebola-plagued regions.

What’s new over the past three years is Bluetooth-enabled devices that can transmit their results over the network. BewellConnect includes this networking capability in 17 current devices. The company tries to provide a supremely easy path for the patient to transmit the device over a phone app to the cloud. The patient can register multiple family members on the app, and is prompted twice to indicate who was using the device so as to prevent errors. BewellConnect is working on an alert system for providers, a simple use case for data collection.

Many products from BewellConnect are in widespread use in France, where the company is based, and they have launched a major entry into the US market. I asked BewellConnect’s CEO, Olivier Hua, whether the US market presents greater problems than France. He said that the two markets are more similar than we think.

Health care in the US has historically been fragmented, whereas in France it was unified under government control. But the Affordable Care Act in the US has brought more regulation to the market here, whereas private health care providers (combining insurance and treatment) have been growing in France. As of January 1 of this year, France has required all employers to include a private option in their health care offerings. For the first time, French individuals are being hit with the copays and deductibles familiar to Americans, and are weighing how often to go to the doctor. Although the US market is still more diverse, and burdened by continuing fee-for-service plans, it is comparable to the French market for a vendor such as BewellConnect.

The next section of this article will continue with a discussion of barriers in the use of patient data, and other insights from the Connected Health symposium.

A New Meaning for Connected Health at 2016 Symposium (Part 1 of 4)

Posted on November 3, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Those of us engaged in health care think constantly about health. But at the Connected Health symposium, one is reminded that the vast majority of people don’t think much about health at all. They’re thinking about child care, about jobs, about bills, about leisure time. Health comes into the picture only through its impacts on those things.

Certainly, some people who have suffered catastrophic traumas–severe accidents, cancer, or the plethora of unfortunate genetic conditions–become obsessed about health to the same extent as health professionals. These people become e-patients and do all the things they need to do regain the precious state of being they enjoyed before their illness, often clashing with the traditional medical establishment in pursuit of health.

But for most people with chronic conditions, the opposite holds true. A whimsical posting points out that we willingly pay more to go to a masseur or hairdresser than to a doctor. I appreciate this observation more than the remedies offered by the author, which fall into the usual “patient engagment” activities that I have denigrated in an earlier article.

Understanding health as a facet and determinant of everyday life becomes even more important as we try to reverse the rise of costs, which in many nations are threatening economic progress and even the social contract. (Witness the popular anger in the current US election over rising insurance premiums and restrictions on choice.) We have to provide health solutions to people who are currently asymptomatic. The conventional focus on diagnosed conditions won’t serve us.

It’s thus commendable that the Connected Health symposium for 2016 has evolved to the point where participants can think not only of reaching out to patients, but to embedding their interventions so deeply into patient life that the patient no longer has to think about her health to benefit. This gives a new meaning to the word “connected”. Whereas, up to now, it referred to connecting a patient more closely with their clinicians and care-takers (through data collection, messaging, and online consultations), “connected” can also mean connecting our healthful interventions to the patient’s quotidian concerns about work, family, and leisure.

We can do this by such means as choosing data collection that the patient can enable and then stop thinking about, and integrating care with the social media they use regularly. In her keynote, Nancy Brown, CEO of the American Heart Association, pointed out that social connections are critical to health and are increasingly taking place online, instead of someone dropping by her neighbor for coffee. The AHA’s Go Red For Women program successfully exploited social connections to improve heart health.

If you want an overview of what people mean by the term “connected health,” you would do well to get The Internet of Healthy Things, by Dr. Joseph Kvedar, leader of Partners Connected Health and chief organizer of this symposium. For a shorter overview, you can read my review of the book, and my report from an earlier symposium. Now in its 13th year, the annual symposium signed up 1200 registered attendees–the biggest number yet. This article looks over the people and companies I heard from there.

Exhausting the possibilities of passive data collection
Glen Tullman, CEO of Livongo Health, offered basic principles for consumer health in a keynote: it must be personal, simple, context-aware, and actionable. As an example, he cited Livongo’s own program for sending text messages to diabetes patients: they are tailored to the individual and offer actionable advice such as, “Drink a glass of water”.

A panel on consumer technology extolled the value of what analysts like to call data exhaust: the use of data that can be collected from people’s everyday behavior. After all, this exhaust is what marketers used all the time to figure out what we want to buy, and what governments use to decide whether we’re dangerous actors. It can have value in health too.

As pointed out by Jim Harper, Co-Founder and COO of Sonde Health, providers and researchers can learn a lot from everyday interactions with devices–diagnosing activity levels from accelerometers, for instance, or depression from a drop in calls or text messages. Similarly, a symposium attendee suggested to me that colleges could examine social connections among students to determine which ones are at risk of abusing alcohol.

Lauren Costantini, President and CEO of Prima-Temp, said in a keynote that we can predict all kinds of things from your circadian rhythm–as measured by a sensor–such as an oncoming infection, or the best way to deliver chemotherapy.

Spire offers a device that claims to help people suffering from anxiety, with a low barrier to adoption and instant feedback. It’s a device worn on the body that can alert the user in various ways (buzzes, text messages) when the user’s anxiety level is rising.

Does the Spire device work? They got a partial answer to this in a study by Partners Health Care, where people had an option of using the device on its own or in conjunction with a headband from Muse that helps train people to meditate. (There was no control group.) Unlike the Spire device, which one can put on and forget about, the Muse purchaser is expected to make a conscious decision to meditate using the device regularly.

The Partners study showed modest benefits to these devices, but had mixed results. For instance, fewer than half the subjects continued use of the devices after the study finished. Those who did continue showed a strong positive effect on stress, and those who discontinued use showed a very small positive effect. Strangely there was a small overall increase in tension for all participants, even though they also demonstrated increases in “calm” periods. There is no correlation between the length of time that individuals used their devices and their outcomes.

Jonathan Palley, CEO & Co-founder of Spire, said participants often liked their devices, but stopped using them because they have learned from the devices how to identify stress and felt they could self-regulate and no longer needed the devices. I believe this finding may apply to other consumer devices as well. The huge rate at which devices are abandoned after six months, the subject of frequent reports and agonized commentaries, may simply indicate that users have reached their goal and can continue their fitness programs on their own. Graeme Moffat, VP of Scientific & Regulatory Affairs at Muse, reported that many purchasers use their headband for only three months, but come back to it over time to refresh their training.

We’ll look at some more aspects of integrating devices into patient lives in the next section of this article.