Measuring the Vital Signs of Health Care Progress at the Connected Health Conference (Part 3 of 3)

Posted on November 17, 2017 I Written By

Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space.

Andy also writes often for O’Reilly’s Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O’Reilly’s Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous segment of this article covered one of the crucial themes in health care today: simplifying technology’s interactions with individuals over health care. This segment finishes my coverage of this year’s Connected Health Conference with two more themes: improved data sharing and blockchains.

Keynote at Connected Health Conference

Keynote at Connected Health Conference

Improved data sharing
The third trend I’m pursuing is interoperability. If data collection is the oxygen that fuels connected health, data sharing is the trachea that brings it where it’s needed. Without interoperability, clinicians cannot aid patients in their homes, analysts cannot derive insights that inform treatments, and transitions to assisted living facilities or other environments will lead to poor care.

But the health care field is notoriously bad at data sharing. The usual explanation is that doctors want to make it hard for competitors to win away their patients. If that’s true, fee-for-value reimbursements will make them even more possessive. After all, under fee-for-value, clinicians are held accountable for patient outcomes over a long period of time. They won’t want to lose control of the patient. I first heard of this danger at a 2012 conference (described in the section titled “Low-hanging fruit signals a new path for cost savings”).

So the trade press routinely and ponderously reports that once again, years have gone by without much progress in data sharing. The US government recognizes that support for interoperability is unsatisfactory, and has recently changed the ONC certification program to focus on it.

Carla Kriwet, CEO of Connected Care and Health Informatics at Philips, was asked in her keynote Fireside Chat to rate the interoperability of health data on a scale from 0 to 10, and chose a measly 3. She declared that “we don’t believe in closed systems at all” and told me in an interview that Philips is committed to creating integrated solutions that work with any and all products. Although Philips devices are legendary in many domains, Kriwet wants customers to pay for outcomes, not devices.

For instance, Philips recently acquired the Wellcentive platform that allows better care in hospitals by adopting population health approaches that look at whole patient populations to find what works. The platform works with a wide range of input sources and is meant to understand patient populations, navigate care and activate patients. Philips also creates dashboards with output driven by artificial intelligence–the Philips IntelliVue Guardian solution with Early Warning Scoring (EWS)–that leverages predictive analytics to present critical information about patient deterioration to nurses and physicians. This lets them intervene quickly before an adverse event occurs, without the need for logging in repeatedly. (This is an example of another trend I cover in this article, the search for simpler interfaces.)

Kriwet also told me that Philips has incorporated the principles of agile programming throughout the company. Sprints of a few weeks develop their products, and “the boundary comes down” between R&D and the sales team.

I also met with Jon Michaeli, EVP of Strategic Partnerships with Medisafe, a company that I covered two years ago. Medisafe is one of a slew of companies that encourage medication adherence. Always intensely based on taking in data and engaging patients in a personalized way, Medisafe has upped the sophistication of their solution, partly by integrating with other technologies. One recent example is its Safety Net, provided by artificial intelligence platform Neura. For instance, if you normally cart your cell phone around with you, but it’s lying quiet from 10:00 PM until 6:00 AM, Safety Net may determine your reason for missing your bedtime dose at 11:00 PM was that you had already fallen asleep. If Safety Net sees recurring patterns of behavior, it will adjust reminder time automatically.

Medisafe also gives users the option of recording the medication adherence through sensors rather than responding to reminders. They can communicate over Bluetooth to a pill bottle cap (“iCap”) that replaces the standard medicine cap and lets the service know when you have opened the bottle. The iCap fits the vast majority of medicine bottles dispensed by U.S. pharmacies and costs only $20 ($40 for a pack of 2), so you can buy several and use them for as long as you’re taking your medicine.

On another level, Mivatek provides some of the low-level scaffolding to connected health by furnishing data from devices to systems developed by the company’s clients. Suppose, for instance, that a company is developing a system that responds to patients who fall. Mivatek can help them take input from a button on the patient’s phone, from a camera, from a fall detector, or anything else to which Mivatek can connect. The user can add a device to his system simply by taking a picture of the bar code with his phone.

Jorge Perdomo, Senior Vice President Corporate Strategy & Development at Mivatek, told me that these devices work with virtually all of the available protocols on the market that have been developed to promote interoperability. In supporting WiFi, Mivatek loads an agent into its system to provide an additional level of security. This prevents device hacking and creates an easy-to-install experience with no setup requirements.

Blockchains
Most famous as a key technological innovation supporting BitCoin, blockchains have a broad application as data stores that record transactions securely. They can be used in health care for granting permissions to data and other contractual matters. The enticement offered by this technology is that no central institution controls or stores the blockchain. One can distribute the responsibility for storage and avoid ceding control to one institution.

Blockchains do, however, suffer from inherent scaling problems by design: they grow linearly as people add transactions, the additions must be done synchronously, and the whole chain must be stored in its entirety. But for a limited set of participants and relatively rate updates (for instance, recording just the granting of permissions to data and not each chunk of data exchanged), the technology holds great promise.

Although I see a limited role for blockchains, the conference gave considerable bandwidth to the concept. In a keynote that was devoted to blockchains, Dr. Samir Damani described how one of his companies, MintHealth, planned to use them to give individuals control over health data that is currently held by clinicians or researchers–and withheld from the individuals themselves.

I have previously covered the importance patient health records, and the open source project spotlighted by that article, HIE of One, now intends to use blockchain in a manner similar to MintHealth. In both projects, the patient owns his own data. MintHealth adds the innovation of offering rewards for patients who share their data with researchers, all delivered through the blockchain. The reward system is quite intriguing, because it would create for the first time a real market for highly valuable patient data, and thus lead to more research use along with fair compensation for the patients. MintHealth’s reward system also fits the connected health vision of promoting healthy behavior on a daily basis, to reduce chronic illness and health care costs.

Conclusion
Although progress toward connected health comes in fits and starts, the Connected Health Conference is still a bright spot in health care each year. For the first time this year, Partners’ Center for Connected Health partnered with another organization, the Personal Connected Health Alliance, and the combination seems to be a positive one. Certain changes were noticeable: for instance, all the breakout sessions were panels, and the keynotes were punctuated by annoying ads. An interesting focus this year was wellness in aging, the topic of the final panel. One surprising difference was the absence of the patient advocates from the Society for Participatory Medicine whom I’m used to meeting each year at this conference, perhaps because they held their own conference the day before.

The Center for Connected Health’s Joseph Kvedar still ran the program team, and the themes were familiar from previous years. This conference has become my touchstone for understanding health IT, and it will continue to be the place to go to track the progress of health care reform from a technological standpoint.